
Journal of Approximation Theory 118, 257–274 (2002)

doi:10.1006/jath.2002.3723
Mass Points of Measuresand Orthogonal Polynomials
on the Unit Circle1

Leonid Golinskii

Mathematics Division, Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue,

Kharkov 61103, Ukraine

E-mail: golinskii@ilt.kharkov.ua

Communicated by Walter Van Assche

Received October 10, 2001; accepted in revised form June 26, 2002

Orthogonal polynomials on the unit circle are completely determined by their

reflection coefficients through the Szeg +oo recurrences. We assume that the reflection

coefficients tend to some complex number a with 05jaj51: The orthogonality

measure m then lives essentially on the arc feit : a4t42p� ag where sin a
2
¼def jaj

with a 2 ð0;pÞ:Under the certain rate of convergence it was proved in (Golinskii et al.

(J. Approx. Theory 96 (1999), 1–32)) that m has no mass points inside this arc. We

show that this result is sharp in a sense. We also examine the case of the whole unit

circle and some examples of singular continuous measures given by their reflection

coefficients. # 2002 Elsevier Science (USA)

Key Words: measures on the unit circle; orthogonal polynomials; reflection

coefficients; transfer matrices.
1. INTRODUCTION

Let m be a probability measure on the unit circle T ¼ fjzj ¼ 1g with the
infinite support. The latter is defined as the smallest closed set with the
complement having m-measure zero. The polynomials jnðzÞ ¼ jnðm; zÞ ¼
knðmÞzn þ 
 
 
 ; orthonormal on the unit circle with respect to m are uniquely
determined by the requirement that kn ¼ knðmÞ > 0 and

Z
T

jnðzÞjmðzÞ dm ¼ dn;m; n;m ¼ 0; 1; . . . ; z 2 T: ð1Þ

It is well known (see, e.g., [5]) that the theory of orthogonal polynomials
on the unit circle can be viewed as a theory of the first-order vector

1This material is based upon work supported by the INTAS Grant 2000-272.
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difference equation

~XX ðz; nÞ ¼ Tðz; anÞ~XX ðz; n � 1Þ; n 2 N ¼deff1; 2; . . .g;

where

Tðz; anÞ ¼def
1

rn

z an

%aanz 1

 !
; r2n ¼def 1� janj2; ð2Þ

and fang is an arbitrary sequence of complex numbers with janj51: This
equation is called the Szeg +oo equation and T the Szeg +oo matrix. The relation

jnðzÞ
jn

nðzÞ

" #
¼ Tðz; anÞ

jn�1ðzÞ
jn

n�1ðzÞ

" #
; n51; j0 ¼ jn

0 ¼ 1 ð3Þ

is just a vector form of the known Szeg +oo recurrences (cf. [12 formula
(11.4.7)]). Here, the reversed * -polynomial of a polynomial pn of degree

n is defined by pn
nðzÞ ¼

def
zn pnð1=%zzÞ: In the orthogonal polynomials setting

the numbers an are known as the reflection coefficients and an ¼ k�1
n jnð0Þ:

The Favard theorem for the unit circle states that each sequence fang from
the open unit disk D comes up as a sequence of reflection coefficients for a
certain uniquely determined probability measure m:

Let TsðzÞ ¼
def

Tðz; asÞTðz; as�1Þ 
 
 
Tðz; a1Þ; s51; be the transfer matrix.
Then (3) can be written as

jsðzÞ
jn

s ðzÞ

" #
¼ TsðzÞ

1

1

" #
: ð4Þ

For each Szeg +oo matrix Tðz; aÞ its eigenvalues fr1; r2g; i.e., the roots of the
characteristic equation

r2 � z þ 1

r
r þ z ¼ 0; r2 ¼ 1� jaj2 ð5Þ

can be found explicitly (cf. [6, Sect. 2])

r1;2ðzÞ ¼
z þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � eiaÞðz � e�iaÞ

p
2r

; a ¼def 2 arcsinjaj:

By the Vieta formulas

rðr1 þ r2Þ ¼ z þ 1; r1r2 ¼ z: ð6Þ
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There are two arcs of the unit circle pertaining to the number a:

Da ¼
deffeit : a4t42p� ag; D0

a ¼
deffeit : a5t52p� ag: ð7Þ

It is not hard to see that jr1ðzÞj ¼ jr2ðzÞj ¼ 1 for z 2 Da (and r1 ¼ r2 only at
the endpoints of the arc), and jr1ðzÞj > 1 > jr2ðzÞj off Da: Moreover, for
z ¼ eit 2 Da

z1;2ðeitÞ ¼def rr1;2ðeitÞ ¼ ei
t
2 cos

t

2
� igðtÞ

� 	
; gðtÞ ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2

a
2
� cos2

t

2

r
: ð8Þ

Let us point out that both eigenvalues rj and arcs (7) are completely
determined by the absolute value jaj (and independent of the argument of a).

For z 2 D0
a the Szeg +oo matrix T can be reduced to diagonal form

Tðz; aÞ ¼ VðzÞRðzÞV�1ðzÞ; RðzÞ ¼def
r1ðzÞ 0

0 r2ðzÞ

 !
: ð9Þ

Here V may be taken as

V ¼
1 1

x1 x2

 !
; V�1 ¼ 1

x2 � x1

x2 �1

�x1 1

 !
;

where xj ¼ xjðzÞ are defined by the equalities

z þ axj ¼ rrj ¼ zj; j ¼ 1; 2: ð10Þ

The starting point for our investigation is the following result obtained in
[6, Corollary 13, p. 21].

Theorem A. Let limn!1 an ¼ a; 05jaj51 and suppose that for every

real t

X1
n¼1

exp t
Xn

k¼1

jak � aj
( )

¼ 1: ð11Þ

Then the corresponding orthogonality measure has no mass points in D0
a:

Note that (11) holds whenever jan � aj ¼ oð1=nÞ: Our goal is to show that
this result is sharp in a way. Let 05jbj51; denote by BðbÞ the set of all
sequences fbng of complex numbers which satisfy

(i) jbnj51 for n51;

(ii) bn ¼ bð1þ enÞ; limn!1 en ¼ 0;

(iii)
P1

n¼0 jenj ¼ 1:
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Definition. Two sequences fa0
ng 2 Bða0Þ and fa00

ng 2 Bða00Þ are said to
be equivalent if

lim
n!1

Pn
k¼1 je0kjPn
k¼1 je00kj

¼ 1:

It turns out that if (11) is false (that is, the series converges for some t),
then there exists a sequence fa0

ng 2 Bða0Þ; equivalent to the original one and
such that the set of mass points for the corresponding orthogonality
measure m0 is nonempty in an appropriate arc D0

a0 : The idea (we call it the
‘‘twisting–squeezing procedure’’) is adopted from [9], where the similar
result about discrete Schr .oodinger operators is established. We complete the
paper with relatively simple case of the whole unit circle and look at some
examples of singular continuous measures given by their reflection
coefficients.

2. TWISTING–SQUEEZING PROCEDURE

We will focus on the class of sample sequences of reflection coefficients,
each of which is determined by the following triple ða;L; fengÞ:

a is a nonzero complex number from D;
L ¼ fn15n25 
 
 
g is a sequence of positive integers;
fengn51 is a sequence of complex numbers with jenj51; limn!1 en ¼ 0

and j1þ enj ¼ 1:
Put

an ¼
a; for n =2 L;

að1þ ekÞ for n ¼ nk:

(
ð12Þ

Note that janj ¼ jaj for all n:
The main objective of our paper is to show that the result in Theorem A is

sharp in a sense.

Theorem 1. Let a sequence fa0
ng of reflection coefficients satisfy a0

n ¼
a0ð1þ e0nÞ with limn!1 e0n ¼ 0 and 05ja0j51: Suppose that for some M 2 R

X1
n¼1

exp M
Xn

k¼1

ja0
k � a0j

( )
¼
X1
n¼1

exp Mja0j
Xn

k¼1

je0kj
( )

51: ð13Þ

Then for an arbitrary N 2 N there exists an equivalent sample sequence fang
such that the set of mass points of the corresponding orthogonality measure m
on the arc Da is nonempty and contains at least N points.
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Write Tð
; aÞ ¼ T ; Tð
; ank
Þ ¼ Tk: The transfer matrix Ts for such a

sample sequence (12) takes the form

Ts ¼ Ts�nl TlT
ml�1Tl�1Tml�1�1Tl�2 . . .T1T

m1�1; mk ¼ nk � nk�1; ð14Þ

where l 2 N; m1 ¼ n1 and nl4s5nlþ1: Since janj ¼ jaj; the arc D0
a as well as

the eigenvalues r1;2 are the same for all Szeg +oo matrices T and Tk in (14).
Let V reduce T to diagonal form on D0

a (see (9)). Then

Ts ¼ ðVRs�nl V�1ÞTlðVRml�1V�1ÞTl�1 . . .T1ðVRm1�1V�1Þ:

If we slightly rearrange the factors, we come to the following representation
for the transfer matrix:

Ts¼VRs�nlþ1ðR�1V�1TlVÞRml ðR�1V�1Tl�1VÞ 
 
 
 ðR�1V�1T1VÞRm1R�1V�1

¼VRs�nlþ1
Y2

14p4l

ApRmp 
 R�1V�1; Ap ¼def R�1V�1TpV : ð15Þ

For k ¼ 1; 2; . . . ; l consider the set of vectors

uk

vk

" #
¼def AkRmk

uk�1

vk�1

" #
;

u0

v0

" #
¼def R�1V�1 1

1

" #
: ð16Þ

Then

uk

vk

" #
¼

Y2
14j4k

AjR
mj

u0

v0

" #
;

js

jn
s

" #
¼ VRs�nlþ1

ul

vl

" #
: ð17Þ

On the other hand, by the definition of Ak we have

uk

vk

" #
¼ R�1V�1

Y2
14j4nk

Tðz; ajÞ
1

1

" #
¼ R�1V�1

jnk

jn
nk

" #
: ð18Þ

Lemma 2. Let 05a5p: For an arbitrary vector

h ¼
x

y

" #
2 C2; jxj ¼ jyj

the following inequalities hold:

jx1ðzÞx � yj4jx2ðzÞx � yj4 cot
a
4
jx1ðzÞ x � yj; z ¼ eit 2 D0

a;

where x1;2ðzÞ are defined in (10).
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Proof. Without loss of generality, we may assume that jxj ¼ jyj ¼ jaj; so
that x ¼ aeitðxÞ; y ¼ aeitðyÞ; 04tðxÞ; tðyÞ52p: Put tðx; yÞ ¼ tðxÞ � tðyÞ:
Then

jx2x � yj2 � jx1x � yj2 ¼ jaj2ðjx2j2 � jx1j2Þ � 2jaj2R ðx2 � x1Þeitðx;yÞ
n o

:

For the first term we have

jaj2ðjx2j2 � jx1j2Þ ¼ jz2 � zj2 � jz1 � zj2 ¼ 2Rfzðz1 � z2Þg:

By (8) zðz1 � z2Þ ¼ �2ieit=2 gðtÞ and hence

jaj2ðjx2j2 � jx1j2Þ ¼ 4 sin
t

2
gðtÞ:

Next, aðx2 � x1Þeitðx;yÞ ¼ �2igðtÞexpfit=2þ itðx; yÞg so that

jx2x � yj2 � jx1x � yj2 ¼ 4gðtÞ sin
t

2
þ jaj2R i

a
eiðt=2þtðx;yÞÞ

� �� �
: ð19Þ

Let us now calculate the sum

jx2x � yj2 þ jx1x � yj2 ¼ jaj2ðjx2j2 þ jx1j2 þ 2Þ � 2jaj2R ðx2 þ x1Þeitðx;yÞ
n o

:

Similarly, by using z1 þ z2 ¼ z þ 1 (see (6)) we have

jaj2ðjx2j2 þ jx1j2 þ 2Þ

¼ jz2 � zj2 þ jz1 � zj2 þ 2jaj2

¼ 2r2 þ 2� 2Rf%zzðz1 þ z2Þg þ 2jaj2 ¼ 4� 2Rf%zzðz þ 1Þg

¼ 2ð1� RzÞ ¼ 4 sin2
t

2
;

aðx1 þ x2Þeitðx;yÞ ¼ ð1� zÞeitðx;yÞ and 2R ðx1 þ x2Þeitðx;yÞ
n o

¼ �4 sin
t

2
R

i

a
eiðt=2þtðx;yÞÞ

� �
:

Finally,

jx2x � yj2 þ jx1x � yj2 ¼ 4 sin
t

2
sin

t

2
þ jaj2R i

a
eiðt=2þtðx;yÞÞ

� �� �
: ð20Þ
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By comparing (19) and (20) we see that

jx2x � yj2 � jx1x � yj2 ¼ gðtÞ
sin t

2

jx2x � yj2 þ jx1x � yj2
n o

50: ð21Þ

Since

gðtÞ
sin t

2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

sin2 a
2

sin2 t
2

s
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 a

2

q
¼ cos

a
2
;

we come to the inequality

jx2x � yj2 � jx1x � yj24cos
a
2

jx2x � yj2 þ jx1x � yj2
n o

;

as needed. ]

Since jrjj ¼ 1; jjnj ¼ jjn
n j on T and

V�1
x

y

" #
¼ 1

x2 � x1

x2x � y

�x1x þ y

" #
;

it follows immediately from (18) and Lemma 2 that

jukj4jvkj4cot
a
4
jukj; k ¼ 0; 1; . . . ; l: ð22Þ

Let us now analyze the squeezing effect produced by the matrices Ak;
defined in (15). Take

Aðz; eÞ ¼def R�1V�1Tðz; að1þ eÞÞV ¼ R�1V�1VeRðz; eÞV�1
e V ;

where Ve reduces Tðz; að1þ eÞÞ to diagonal form Rðz; eÞ (cf. (9)). Under the
condition j1þ ej ¼ 1; which is always assumed to hold, we have rjðeÞ ¼
rj; zjðeÞ ¼ zj and Rðz; eÞ ¼ R:

Next,

Ve ¼
1 1

x1ðeÞ x2ðeÞ

 !
; V�1

e ¼ 1

x2ðeÞ � x1ðeÞ
x2ðeÞ �1

�x1ðeÞ 1

 !
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with að1þ eÞxjðeÞ ¼ zjðeÞ � z ¼ zj � z; j ¼ 1; 2: We have

V�1Ve ¼ I þ 1

x2 � x1

x1 � x1ðeÞ x2 � x2ðeÞ
x1ðeÞ � x1 x2ðeÞ � x2

 !
;

V�1
e V ¼ I � 1

x2ðeÞ � x1ðeÞ
x1 � x1ðeÞ x2 � x2ðeÞ
x1ðeÞ � x1 x2ðeÞ � x2

 !
:

Since

x2ðeÞ � x1ðeÞ ¼
z2 � z1

að1þ eÞ ¼
x2 � x1
1þ e

; xj � xjðeÞ ¼
zj � z

a
ge; ge ¼

e
1þ e

;

then

V�1Ve ¼ I þ geBðzÞ; V�1
e V ¼ I � eBðzÞ;

where

BðzÞ ¼ 1

z2 � z1

z1 � z z2 � z

z � z1 z � z2

 !
:

Hence

Aðz; eÞ ¼R�1ðI þ geBðzÞÞRðI � eBðzÞÞ ¼ R�1ðR þ geBR � eRB � egeBRBÞ

¼R�1ðR þ eBR � eRB � *EEðz; eÞÞ; *EEðz; eÞ ¼ e2

1þ e
BRðI þ BÞ:

It is a matter of routine computation (we use z1z2 ¼ r2z at the last step) to
show that

R�1BR � R ¼ RnBR � B ¼ 1

r

0 z2�z
r1

z1�z
r2

0

 !
¼ 1

r2
0 �iZ2ðzÞ

�iZ1ðzÞ 0

 !

with

ZjðzÞ ¼
def izj

z
ðzj � zÞ ¼ jZjðzÞjeitjðzÞ; j ¼ 1; 2: ð23Þ

Note that jzj j ¼ r51 implies Zja0: Finally,

Aðz; eÞ ¼ I þ dQ � Eðz; dÞ; d ¼ e
ir2

; Eðz; dÞ ¼ R�1 *EEðz; eÞ;Q ¼
0 Z2
Z1 0

 !
:

ð24Þ
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Recall, that for a vector h ¼ ½x; y�0 2 C
2 with nonzero entries we defined

tðx; yÞ ¼ argðx %yyÞ:

Lemma 3. Let b¼def pþa
2

> a; and let a nonzero vector h ¼ ½x; y�0 2 C2

satisfy

jyj4jxj4C1ðaÞjyj ð25Þ

and

5p
6
5tðx; yÞ þ t1ðzÞ5

7p
6

ð26Þ

for some z 2 Db � D0
a: Then for small enough jej4e0ðaÞ51 with j1þ ej ¼ 1

and for all such z the inequality

jjAðz; eÞhjj24 1� jaj
4rC1ðaÞ

jej
� �

jjhjj2 ð27Þ

holds.

Proof. We have

jjAðz; eÞhjj2 ¼ jjhjj2 þ 2RfdðQh; hÞg þ Fðz; e; hÞ: ð28Þ

Write d ¼ jdjeita0: Then

Qh ¼
Z2y

Z1x

" #
¼

jZ2yjeiðtðyÞþt2Þ

jZ1xjeiðtðxÞþt1Þ

" #

and

dðQh; hÞ ¼ jdj jxyj jZ2jeð�tðx;yÞþt2þtÞ þ jZ1jeðtðx;yÞþt1þtÞ
n o

;

RfdðQh; hÞg ¼ jdj jxyjfjZ2jcosðtðx; yÞ � t2 � tÞ þ jZ1jcosðtðx; yÞ þ t1 þ tÞg:

By the definition of Zj (23) and (5), (6)

Z1Z2¼�r2r1r2ðz�rr1Þðz�rr2Þ
z2

¼�r2

z
z2�ðzþ1Þz þr2z
� �

¼ r2ð1� r2Þ > 0;

so that jZ1Z2j ¼ r2jaj2 and t1 þ t2 ¼ 0: Next, the condition j1þ ej ¼ 1;
which is equivalent to �2Re ¼ jej2 or 2Id ¼ r2jdj2; gives

2jdjsin t ¼ r2jdj2; sin t ¼ r2

2
jdj ¼ jej

2
:
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Hence, t ¼ OðeÞ as e ! 0 and in any case 05t5p=6 for jej51: In view of
(26)

2p
3
5tðx; yÞ þ t1ðzÞ � t5

4p
3
;

so that cosðtðx; yÞ þ t1ðzÞ � tÞ5� 1=2 and

RfdðQh; hÞg5� jdj jxyj
2

jZ1j þ jZ2jð Þ5� jdj jxyj rjaj:

By (25)

jxyj5 jxj2 þ jyj2

2ðC1ðaÞ þ 1Þ ¼
jjhjj2

2ðC1ðaÞ þ 1Þ5
jjhjj2

4C1ðaÞ
;

which leads to the relation

2RfdðQh; hÞg5� rjaj
2C1ðaÞ

jdjjjhjj2 ¼ � jaj
2rC1ðaÞ

jejjjhjj2:

It remains to estimate the last term F in (28). Clearly, F ¼ Oðe2Þjjhjj2; and
we only have to make more precise the value ‘‘O’’. Since 1� r4
jzj � zj41þ r52; then

jjQjj42; jjBjj4 4

jz1 � z2j
:

But (cf. [6 p. 21]) jz1 � z2j52p�1jt � aj; and hence uniformly for z 2 Db we
have jz1 � z2j5ðp� aÞ=2 and jjBjj48ðp� aÞ�1: Therefore, jF j4C2ðaÞjej2jj
hjj2: The proof is complete. ]

We want to apply the latter result to ½x; y�0 ¼ ½uk; vk�0; k51: Whereas (25)
holds by (22) (with C1ðaÞ ¼ cot a

4
), a special choice of z and fmkg is called

for (the twisting step of the procedure) to meet a much more delicate
inequality (26).

Let wj ¼ e2pioj 2 T; j ¼ 1; 2; . . . ;N: The points fwjg are called rationally
independent if f1;o1; . . . ;oNg are rationally independent in the usual sense,
i.e.,

XN

j¼1

kjoj ¼ k; kj; k 2 Z ¼deff0;�1; . . .g

implies k1 ¼ k2 ¼ 
 
 
 ¼ kN ¼ k ¼ 0:
The following result is just a version of the famous Kronecker theorem.

Regarding the last statement see [8, Lemma 4].
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Lemma 4. Let fw1;w2; . . . ;wNg be rationally independent points on T:
For each positive d > 0 there is a number m0 ¼ m0ðN; dÞ 2 N such that for

arbitrary sets fnjg; fn0jg of points on T the system of inequalities

jwm
j nj � n0jj5d; j ¼ 1; 2; . . . ;N

has a solution m with m4m0:

Let us go back to (16) and put

pk

qk

" #
¼def Rmk

uk�1

vk�1

" #
¼

rmk

1 uk�1

rmk

2 vk�1

" #
;

uk

vk

" #
¼ Ak

pk

qk

" #
; k ¼ 1; 2; . . . ; l:

We think of the passage from ½uk�1; vk�1�0 to ½uk; vk�0 as the kth step of our
procedure, which is performed in two half-steps:

from ½uk�1; vk�1�0 to ½pk; qk�0 (the twisting part);
from ½pk; qk�0 to ½uk; vk�0 (the squeezing part).
We wish to show that the behavior of orthonormal polynomials jn;

related to some sample sequences, at certain points is under the control.

Theorem 5. Let a be a nonzero point in D and sin a
2
¼ jaj: Suppose that

the points fz1; z2; . . . ; zNg are taken on Db with 2b ¼ pþ a which satisfy

wj ¼
r1ðzjÞ
r2ðzjÞ

are rationally independent; j ¼ 1; 2; . . . ;N: ð29Þ

Then there is a number 05e0ðaÞ51 and a sequence L ¼ fn15n25 
 
 
g with

uniformly bounded gaps mk ¼ nk � nk�1 ¼ Oð1Þ as k ! 1; such that for each

sample sequence fa;L; ekg with jekj4e0ðaÞ the relation

X1
s¼n1

jjsðzjÞj24Cða;NÞ
X1
l¼1

Yl

n¼1

1� jaj
4r cot a

4

jenj
� �

; j ¼ 1; 2; . . . ;N ð30Þ

holds.

Proof. Let us begin with the function f ¼ r1=r2: It is not hard to see
from (8) (see also [4, Sect. 2] for more details) that

r1;2ðeitÞ ¼ eiðt
2
�lÞ; cosl ¼def

cos t
2

cos a
2

; eit 2 Da;

so that l varies from 0 to p: Hence, f ¼ e2il is a homeomorphism of Da onto
T: Since the set wj ¼ f ðzjÞ of rationally independent points is dense on the



,
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torus TN ; we can pick up the points fzjg from an arbitrary arc inside Da (say
from Db), to meet (29).

Next, eiðp�t1Þ ¼ �e�it1 ;

eitðpk ;qkÞ ¼ eitðpkÞ � eitðqkÞ ¼ pk %qqk

jpkqkj
¼ f mk

uk�1 %vvk�1

juk�1vk�1j
;

and we apply Lemma 4 with wj ¼ f ðzjÞ;

nj ¼
uk�1ðzjÞvk�1ðzjÞ
juk�1ðzjÞvk�1ðzjÞj

; n0j ¼ �e�it1ðzjÞ; j ¼ 1; 2; . . . ;N;

and d ¼ 1=3 to ensure (26).
Now Lemma 3 comes into play. As jj½pk; qk�0jj ¼ jj½uk�1; vk�1�0jj; we have

ukðzjÞ
vkðzjÞ

" #�����
�����

�����
�����
2

¼ AðekÞ
pkðzjÞ
qkðzjÞ

" #�����
�����

�����
�����
2

4 1� jaj
4r cot a

4

jekj
� �

uk�1ðzjÞ
vk�1ðzjÞ

" #�����
�����

�����
�����
2

or

jukðzjÞj2 þ jvkðzjÞj24
Yk

n¼1

1� jaj
4r cot a

4

jenj
� �

ðju0ðzjÞj2 þ jv0ðzjÞj2

with k ¼ 1; 2; . . . ; l; j ¼ 1; 2; . . . ;N: By (17)

jsðzjÞ
jn

s ðzjÞ

" #�����
�����

�����
�����
2

4jjV jj2
ulðzjÞ
vlðzjÞ

" #�����
�����

�����
�����
2

or

jjsðzjÞj24CðaÞ
Yl

n¼1

1� jaj
4r cot a

4

jenj
� �

:

Since by Lemma 4 the gaps mk are uniformly bounded, we see that

Xnlþ1�1

s¼nl

jjsðzjÞj24CðaÞm0ðNÞ
Yl

n¼1

1� jaj
4r cot a

4

jenj
� �

;

which immediately gives (30). ]

We are in a position now to prove the main result of the paper.
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Proof of Theorem 1. It is clear from (13) that
P1

n¼0 je0nj ¼ 1; that is,

fa0ng 2 Bða0Þ: We begin with the choice of a: Consider the function

xðaÞ ¼def 1
4
tan a

2
tan a

4
; which is monotonically increasing on ð0; pÞ and takes

all values between zero and infinity. Pick a from the equality xðaÞ ¼
Mja0j þ 1 and put

a ¼def sin a
2
; 05a51:

Note that in our notation

xðaÞ ¼
sin a

2

4 cos a
2
cot a

4

¼ jaj
4r cot a

4

: ð31Þ

Given N 2 N; pick the points fz1; z2; . . . ; zNg in Db to meet (29). By
Theorem 5 we find the number e0ðaÞ and the sequence L � N such that (30)
holds. In view of (13), (31) and xðaÞ ¼ Mja0j þ 1; the right-hand side of (30)
is finite, which means that X1

s¼0

jjsðzpÞj251:

It is well known (cf. [11, pp. 45–46; 2, Sect. 20]) that the latter inequality
guarantees the existence of masses for the orthogonality measure m at the
points zp:
It remains only to determine feng: Put

e00k ¼ 0; k =2 L; je00nl
j ¼

Xnl�1

j¼nl�1

je0j j; l 2 N; n0 ¼ 1:

We have limn!1 e00n ¼ 0 because of the boundedness of the gaps mk: Let
nq4s5nqþ1: Then

Xs

k¼1

je00kj ¼
Xq

l¼1

je00nl
j ¼

Xq

l¼1

Xnl�1

j¼nl�1

je0jj4
Xs

j¼1

je0jj;

so that

15

Ps
j¼1 je00j jPs
j¼1 je0jj

5

Pnq

j¼1 je00j jPnqþ1

j¼1 je0jj
¼
Pnq�1

j¼1 je0jjPnqþ1

j¼1 je0jj
¼ 1�

Pnqþ1

j¼nq
je0j jPnqþ1

j¼1 je0jj
! 1:

Since e00n ! 0; then je00nl
j5e0ðaÞ for l5l0 þ 1: Define

ek ¼ 0; k =2 L; jenl
j ¼

0 for l ¼ 1; 2; . . . ; l0;

je00nl
j for l5l0 þ 1;

(
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and j1þ enj ¼ 1 for all n: The triple ða;L; fengÞ provides the sample
sequence equivalent to the original one and mfzpg > 0; p ¼ 1; 2; . . . ;N; as
stated. ]

Remark. As in [9], the following result can be obtained.
Let On ! þ1; n ! 1; arbitrarily slow. There exists a sample sequence

ða;L; fengÞ such that jan � aj ¼ jaenj4On=n and the corresponding ortho-
gonality measure m has infinitely many mass points on Da: As a matter of
fact, the set of mass points can be taken to be dense on Da:

Let us mention the recent paper [10], where the problem of addition of a
finite number of mass points to an absolutely continuous measure with
asymptotically periodic reflection coefficients is studied. It is proved in [10,
Theorem 3] that the difference of the corresponding reflection coefficients
goes to zero in this case.

3. MASS POINTS ON THE WHOLE CIRCLE AND SINGULAR
CONTINUOUS MEASURES

The argument here relies upon the equivalence

mfzg > 0; z 2 T ,
X1
n¼0

jjnðzÞj
251 ð32Þ

mentioned above. Thereby, to prove that mfzg > 0 ðmfzg ¼ 0Þ we need
certain upper (lower) bounds for the orthonormal polynomials.

We begin with the basic Szeg +oo recurrences for monic orthogonal
polynomials on the unit circle

Fn

nðzÞ ¼ Fn

n�1ðzÞ þ %aanzFn�1ðzÞ ¼ Fn

n�1ðzÞ 1þ %aanz
Fn�1ðzÞ
Fn

n�1ðzÞ

� �
; Fn ¼ jn

kn

:

(cf. [1 formula (8.1)]). Iteration of the latter leads to

Fn

nðzÞ ¼
Yn

k¼1

ð1þ %aakzbk�1ðzÞÞ; bj ¼
Fj

Fn
j

: ð33Þ

Since jbjj ¼ 1 on T and Fn
j a0 in %DD; then jbj j41 in %DD and

jFn

nðzÞj ¼
jjn

nðzÞj
kn

4
Yn

k¼1

ð1þ jakjÞ; ð34Þ
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jjn

nðzÞj ¼ jjnðzÞj4kn exp
Xn

k¼1

jakj ; z 2 T: ð35Þ

Recall that the Szeg +oo class of measures on T is characterized by the
inequality

P
n51 janj251 [1, Theorem 8.2].

Theorem 6. Let m belong to the Szeg +oo class and let its reflection

coefficients satisfy

X1
n¼1

exp �2
Xn

k¼1

jakj
( )

¼ 1: ð36Þ

Then mfzg ¼ 0 for all z 2 T; i.e., m is a continuous measure. Conversely, let

an50 and assume that series (36) converges. Then mf1g > 0:

Proof. We invoke the second kind polynomials cn (compared to the
first kind polynomials jn ¼ jnðfangÞ), which are defined by the sequence
of reflection coefficients f�ang: The relation between jn and cn is given
by

jn

nðzÞcnðzÞ þ jnðzÞcn

nðzÞ ¼ 2zn

(cf. [1, formula (1.17)]), which for z ¼ z 2 T is

jnðzÞcnðzÞ þ jnðzÞcnðzÞ ¼ 2R jnðzÞcnðzÞ
n o

¼ 2: ð37Þ

Hence jjncnj51 on the circle, and the upper bound for cn yields the lower
bound for jn:

The general formula for kn (cf. [1, formula (8.6)])

k�2
n ¼

Yn

k¼1

ð1� jakj2Þ ð38Þ

shows that jn and cn have the same leading coefficients. Moreover, within
the Szeg +oo class k2n % k251: It follows now from (35) applied to cn that

jjnðzÞj
25jcnðzÞj

�25k�2exp �2
Xn

k¼1

jakj
( )

:

By (36) the series in (32) diverges, which implies the first statement of the
theorem.
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Suppose now that an ¼ %aan: Then jn; cn are real on the real line and by
(33) and (38)

Fnð1Þ ¼ Fn

nð1Þ ¼
Yn

k¼1

ð1þ anÞ; j2
nð1Þ ¼ k2nF

2
nð1Þ ¼

Yn

k¼1

1þ ak

1� ak

:

If in addition an50; then

c2
nð1Þ ¼

Yn

k¼1

1þ jakj
1� jakj

¼ exp
Xn

k¼1

log
1þ jakj
1� jakj

( )
:

An elementary inequality log 1þx
1�x

52x; 04x51; gives

c2
nð1Þ5exp 2

Xn

k¼1

jakj
( )

¼ exp �2
Xn

k¼1

ak

( )
:

From (37) we see that jnð1Þcnð1Þ ¼ 1 and

j2
nð1Þ4exp 2

Xn

k¼1

ak

( )
;

X1
n¼1

j2
nð1Þ4

X1
n¼1

exp 2
Xn

k¼1

ak

( )
:

The second statement of the theorem follows immediately from (32). The
proof is complete. ]

As a direct consequence we obtain the following result (cf. [3, Theorem
VIII]).

Corollary 7. If janj4ð2nÞ�1
for n5n0 then mfzg ¼ 0 for all z 2 T: If

an50 and janj5ð1=2þ eÞn�1 for e > 0 and n5n0; then mf1g > 0:

There is yet another upper bound for general orthonormal polynomials
valid beyond the Szeg +oo class (cf. [3, Theorem III])

jjnðzÞj4exp
1

1� g2
Xn

k¼1

jakj
( )

; z 2 T; g ¼def sup
n

janj51; ð39Þ

which provides a number of curious examples of singular continuous
measures given by their reflection coefficients.

Example. Take a set L ¼ fn15n25 
 
 
g of positive integers with mk ¼
nkþ1 � nk ! 1 as k ! 1: We call a sequence fang of complex numbers
lacunary if an ¼ 0; n =2 L:2
2The term ‘‘sparse’’ is used in the theory of Schr .oodinger operators.



MEASURES AND POLYNOMIALS ON UNIT CIRCLE 273
Consider a lacunary sequence of reflection coefficients such that
ank

¼ a; 05jaj51: We have

Xn

k¼1

jakj ¼ jjaj; nj4n5njþ1 � 1; j51:

Let cn be the corresponding second kind polynomials. By (39) and
jjncnj51 on T we see that

jjnðzÞj
25exp � 2

1� g2
Xn

k¼1

jakj
( )

:

Therefore,

X1
n¼n1

jjnðzÞj
25

X1
j¼1

Xnjþ1�1

n¼nj

exp � 2jjaj
1� jaj2

( )
¼
X1
j¼1

ðnjþ1 � njÞexp � 2jjaj
1� jaj2

( )
:

Assume now that the gaps mj grow exponentially fast, more precisely,

log mj52jjajð1� jaj2Þ�1:

Then the latter series diverges, and by (32) mfzg ¼ 0 for all z 2 T; that is,
the measure is continuous. It remains only to refer to Khrushchev’s
theorem [7, Corollary 9.2] which states that such measures are
singular.

The more general type of examples can be easily manufactured. Let

ank
¼ gk; 05 lim sup

k!1
jgkj51: ð40Þ

Then the measure generated by such a sequence of reflection coefficients is
singular continuous as long as the gaps mj grow fast enough.

On the other hand, let
P

k jgkj251 in (40), that leads to a subclass of
measures in the Szeg +oo class with the lacunary reflection coefficients. We have
as above

X1
n¼n1

exp �2
Xn

k¼1

jakj
( )

¼
X1
j¼1

ðnjþ1 � njÞexp �2
Xj

k¼1

jgkj
( )

:

By Schwarz’s inequality

Xj

k¼1

jgkj
 !2

4j
Xj

k¼1

jgkj24C2j; C2 ¼def
X1
k¼1

jgkj2;
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so that

X1
j¼1

ðnjþ1 � njÞexp �2
Xj

k¼1

jgkj
( )

5
X1
j¼1

ðnjþ1 � njÞe�2C
ffiffi
j

p
:

By Theorem 6 the corresponding measure is continuous as long as the gaps
mj grow exponentially fast. It is not clear though whether all such measures
are pure absolutely continuous.
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