Mass Points of Measures and Orthogonal Polynomials on the Unit Circle ${ }^{1}$

Leonid Golinskii
Mathematics Division, Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, Kharkov 61103, Ukraine
E-mail: golinskii@ilt.kharkov.ua
Communicated by Walter Van Assche

Received October 10, 2001; accepted in revised form June 26, 2002

Orthogonal polynomials on the unit circle are completely determined by their reflection coefficients through the Szegő recurrences. We assume that the reflection coefficients tend to some complex number a with $0<|a|<1$. The orthogonality measure μ then lives essentially on the arc $\left\{e^{i t}: \alpha \leqslant t \leqslant 2 \pi-\alpha\right\}$ where $\sin \frac{\alpha}{2} \stackrel{\text { def }}{=}|a|$ with $\alpha \in(0, \pi)$. Under the certain rate of convergence it was proved in (Golinskii et al. (J. Approx. Theory 96 (1999), 1-32)) that μ has no mass points inside this arc. We show that this result is sharp in a sense. We also examine the case of the whole unit circle and some examples of singular continuous measures given by their reflection coefficients. © 2002 Elsevier Science (USA)
Key Words: measures on the unit circle; orthogonal polynomials; reflection coefficients; transfer matrices.

1. INTRODUCTION

Let μ be a probability measure on the unit circle $\mathbb{T}=\{|\zeta|=1\}$ with the infinite support. The latter is defined as the smallest closed set with the complement having μ-measure zero. The polynomials $\varphi_{n}(z)=\varphi_{n}(\mu, z)=$ $\kappa_{n}(\mu) z^{n}+\cdots$, orthonormal on the unit circle with respect to μ are uniquely determined by the requirement that $\kappa_{n}=\kappa_{n}(\mu)>0$ and

$$
\begin{equation*}
\int_{\mathbb{T}} \varphi_{n}(\zeta) \overline{\varphi_{m}(\zeta)} d \mu=\delta_{n, m}, \quad n, m=0,1, \ldots, \quad \zeta \in \mathbb{T} . \tag{1}
\end{equation*}
$$

It is well known (see, e.g., [5]) that the theory of orthogonal polynomials on the unit circle can be viewed as a theory of the first-order vector ${ }^{1}$ This material is based upon work supported by the INTAS Grant 2000-272.
difference equation

$$
\vec{X}(z, n)=T\left(z, a_{n}\right) \vec{X}(z, n-1), \quad n \in \mathbb{N} \stackrel{\text { def }}{=}\{1,2, \ldots\}
$$

where

$$
T\left(z, a_{n}\right) \stackrel{\text { def }}{=} \frac{1}{\rho_{n}}\left(\begin{array}{cc}
z & a_{n} \tag{2}\\
\bar{a}_{n} z & 1
\end{array}\right), \quad \rho_{n}^{2} \stackrel{\text { def }}{=} 1-\left|a_{n}\right|^{2}
$$

and $\left\{a_{n}\right\}$ is an arbitrary sequence of complex numbers with $\left|a_{n}\right|<1$. This equation is called the Szegő equation and T the Szegő matrix. The relation

$$
\left[\begin{array}{l}
\varphi_{n}(z) \tag{3}\\
\varphi_{n}^{*}(z)
\end{array}\right]=T\left(z, a_{n}\right)\left[\begin{array}{c}
\varphi_{n-1}(z) \\
\varphi_{n-1}^{*}(z)
\end{array}\right], \quad n \geqslant 1, \quad \varphi_{0}=\varphi_{0}^{*}=1
$$

is just a vector form of the known Szegő recurrences (cf. [12 formula (11.4.7)]). Here, the reversed *-polynomial of a polynomial p_{n} of degree n is defined by $p_{n}^{*}(z) \stackrel{\text { def }}{=} z^{n} \overline{p_{n}(1 / \bar{z})}$. In the orthogonal polynomials setting the numbers a_{n} are known as the reflection coefficients and $a_{n}=\kappa_{n}^{-1} \varphi_{n}(0)$. The Favard theorem for the unit circle states that each sequence $\left\{a_{n}\right\}$ from the open unit disk \mathbb{D} comes up as a sequence of reflection coefficients for a certain uniquely determined probability measure μ.

Let $\mathscr{T}_{s}(z) \stackrel{\text { def }}{=} T\left(z, a_{s}\right) T\left(z, a_{s-1}\right) \cdots T\left(z, a_{1}\right), s \geqslant 1$, be the transfer matrix. Then (3) can be written as

$$
\left[\begin{array}{l}
\varphi_{s}(z) \tag{4}\\
\varphi_{s}^{*}(z)
\end{array}\right]=\mathscr{T}_{s}(z)\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

For each Szegő matrix $T(z, a)$ its eigenvalues $\left\{r_{1}, r_{2}\right\}$, i.e., the roots of the characteristic equation

$$
\begin{equation*}
r^{2}-\frac{z+1}{\rho} r+z=0, \quad \rho^{2}=1-|a|^{2} \tag{5}
\end{equation*}
$$

can be found explicitly (cf. [6, Sect. 2])

$$
r_{1,2}(z)=\frac{z+1 \pm \sqrt{\left(z-e^{i \alpha}\right)\left(z-e^{-i \alpha}\right)}}{2 \rho}, \quad \alpha \stackrel{\operatorname{def}}{=} 2 \arcsin |a|
$$

By the Vieta formulas

$$
\begin{equation*}
\rho\left(r_{1}+r_{2}\right)=z+1, \quad r_{1} r_{2}=z \tag{6}
\end{equation*}
$$

There are two arcs of the unit circle pertaining to the number a :

$$
\begin{equation*}
\Delta_{\alpha} \stackrel{\text { def }}{=}\left\{e^{i t}: \alpha \leqslant t \leqslant 2 \pi-\alpha\right\}, \quad \Delta_{\alpha}^{0} \stackrel{\text { def }}{=}\left\{e^{i t}: \alpha<t<2 \pi-\alpha\right\} . \tag{7}
\end{equation*}
$$

It is not hard to see that $\left|r_{1}(z)\right|=\left|r_{2}(z)\right|=1$ for $z \in \Delta_{\alpha}$ (and $r_{1}=r_{2}$ only at the endpoints of the arc), and $\left|r_{1}(z)\right|>1>\left|r_{2}(z)\right|$ off Δ_{α}. Moreover, for $z=e^{i t} \in \Delta_{\alpha}$
$z_{1,2}\left(e^{i t}\right) \stackrel{\text { def }}{=} \rho r_{1,2}\left(e^{i t}\right)=e^{i \frac{t}{2}\left(\cos \frac{t}{2} \pm i g(t)\right), \quad g(t) \stackrel{\text { def }}{=} \sqrt{\cos ^{2} \frac{\alpha}{2}-\cos ^{2} \frac{t}{2}} ~}$
Let us point out that both eigenvalues r_{j} and arcs (7) are completely determined by the absolute value $|a|$ (and independent of the argument of a).

For $z \in \Delta_{\alpha}^{0}$ the Szegő matrix T can be reduced to diagonal form

$$
T(z, a)=V(z) R(z) V^{-1}(z), \quad R(z) \stackrel{\text { def }}{=}\left(\begin{array}{cc}
r_{1}(z) & 0 \tag{9}\\
0 & r_{2}(z)
\end{array}\right) .
$$

Here V may be taken as

$$
V=\left(\begin{array}{ll}
1 & 1 \\
\xi_{1} & \xi_{2}
\end{array}\right), \quad V^{-1}=\frac{1}{\xi_{2}-\xi_{1}}\left(\begin{array}{cc}
\xi_{2} & -1 \\
-\xi_{1} & 1
\end{array}\right)
$$

where $\xi_{j}=\xi_{j}(z)$ are defined by the equalities

$$
\begin{equation*}
z+a \xi_{j}=\rho r_{j}=z_{j}, \quad j=1,2 \tag{10}
\end{equation*}
$$

The starting point for our investigation is the following result obtained in [6, Corollary 13, p. 21].

Theorem A. Let $\lim _{n \rightarrow \infty} a_{n}=a, 0<|a|<1$ and suppose that for every real t

$$
\begin{equation*}
\sum_{n=1}^{\infty} \exp \left\{t \sum_{k=1}^{n}\left|a_{k}-a\right|\right\}=\infty \tag{11}
\end{equation*}
$$

Then the corresponding orthogonality measure has no mass points in Δ_{α}^{0}.
Note that (11) holds whenever $\left|a_{n}-a\right|=o(1 / n)$. Our goal is to show that this result is sharp in a way. Let $0<|b|<1$, denote by $\mathscr{B}(b)$ the set of all sequences $\left\{b_{n}\right\}$ of complex numbers which satisfy
(i) $\left|b_{n}\right|<1$ for $n \geqslant 1$;
(ii) $b_{n}=b\left(1+\varepsilon_{n}\right), \lim _{n \rightarrow \infty} \varepsilon_{n}=0$;
(iii) $\sum_{n=0}^{\infty}\left|\varepsilon_{n}\right|=\infty$.

Definition. Two sequences $\left\{a_{n}^{\prime}\right\} \in \mathscr{B}\left(a^{\prime}\right)$ and $\left\{a_{n}^{\prime \prime}\right\} \in \mathscr{B}\left(a^{\prime \prime}\right)$ are said to be equivalent if

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left|\varepsilon_{k}^{\prime}\right|}{\sum_{k=1}^{n}\left|\varepsilon_{k}^{\prime \prime}\right|}=1
$$

It turns out that if (11) is false (that is, the series converges for some t), then there exists a sequence $\left\{a_{n}^{\prime}\right\} \in \mathscr{B}\left(a^{\prime}\right)$, equivalent to the original one and such that the set of mass points for the corresponding orthogonality measure μ^{\prime} is nonempty in an appropriate arc $\Delta_{\alpha^{\prime}}^{0}$. The idea (we call it the "twisting-squeezing procedure") is adopted from [9], where the similar result about discrete Schrödinger operators is established. We complete the paper with relatively simple case of the whole unit circle and look at some examples of singular continuous measures given by their reflection coefficients.

2. TWISTING-SQUEEZING PROCEDURE

We will focus on the class of sample sequences of reflection coefficients, each of which is determined by the following triple $\left(a, \Lambda,\left\{\varepsilon_{n}\right\}\right)$:
a is a nonzero complex number from \mathbb{D};
$\Lambda=\left\{n_{1}<n_{2}<\cdots\right\}$ is a sequence of positive integers;
$\left\{\varepsilon_{n}\right\}_{n \geqslant 1}$ is a sequence of complex numbers with $\left|\varepsilon_{n}\right|<1, \lim _{n \rightarrow \infty} \varepsilon_{n}=0$ and $\left|1+\varepsilon_{n}\right|=1$.

Put

$$
a_{n}= \begin{cases}a, & \text { for } n \notin \Lambda \tag{12}\\ a\left(1+\varepsilon_{k}\right) & \text { for } n=n_{k}\end{cases}
$$

Note that $\left|a_{n}\right|=|a|$ for all n.
The main objective of our paper is to show that the result in Theorem A is sharp in a sense.

THEOREM 1. Let a sequence $\left\{a_{n}^{\prime}\right\}$ of reflection coefficients satisfy $a_{n}^{\prime}=$ $a^{\prime}\left(1+\varepsilon_{n}^{\prime}\right)$ with $\lim _{n \rightarrow \infty} \varepsilon_{n}^{\prime}=0$ and $0<\left|a^{\prime}\right|<1$. Suppose that for some $M \in \mathbb{R}$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \exp \left\{M \sum_{k=1}^{n}\left|a_{k}^{\prime}-a^{\prime}\right|\right\}=\sum_{n=1}^{\infty} \exp \left\{M\left|a^{\prime}\right| \sum_{k=1}^{n}\left|\varepsilon_{k}^{\prime}\right|\right\}<\infty \tag{13}
\end{equation*}
$$

Then for an arbitrary $N \in \mathbb{N}$ there exists an equivalent sample sequence $\left\{a_{n}\right\}$ such that the set of mass points of the corresponding orthogonality measure μ on the arc Δ_{α} is nonempty and contains at least N points.

Write $T(\cdot, a)=T, T\left(\cdot, a_{n_{k}}\right)=T_{k}$. The transfer matrix \mathscr{T}_{s} for such a sample sequence (12) takes the form

$$
\begin{equation*}
\mathscr{T}_{s}=T^{s-n_{l}} T_{l} T^{m_{l}-1} T_{l-1} T^{m_{l-1}-1} T_{l-2} \ldots T_{1} T^{m_{1}-1}, \quad m_{k}=n_{k}-n_{k-1} \tag{14}
\end{equation*}
$$

where $l \in \mathbb{N}, m_{1}=n_{1}$ and $n_{l} \leqslant s<n_{l+1}$. Since $\left|a_{n}\right|=|a|$, the arc Δ_{α}^{0} as well as the eigenvalues $r_{1,2}$ are the same for all Szegő matrices T and T_{k} in (14).

Let V reduce T to diagonal form on Δ_{α}^{0} (see (9)). Then

$$
\mathscr{T}_{s}=\left(V R^{s-n_{l}} V^{-1}\right) T_{l}\left(V R^{m_{l}-1} V^{-1}\right) T_{l-1} \ldots T_{1}\left(V R^{m_{1}-1} V^{-1}\right) .
$$

If we slightly rearrange the factors, we come to the following representation for the transfer matrix:

$$
\begin{align*}
\mathscr{T}_{s} & =V R^{s-n_{l}+1}\left(R^{-1} V^{-1} T_{l} V\right) R^{m_{l}}\left(R^{-1} V^{-1} T_{l-1} V\right) \cdots\left(R^{-1} V^{-1} T_{1} V\right) R^{m_{1}} R^{-1} V^{-1} \\
& =V R^{s-n_{l}+1} \prod_{1 \leqslant p \leqslant l}^{\curvearrowleft} A_{p} R^{m_{p}} \cdot R^{-1} V^{-1}, \quad A_{p} \stackrel{\text { def }}{=} R^{-1} V^{-1} T_{p} V \tag{15}
\end{align*}
$$

For $k=1,2, \ldots, l$ consider the set of vectors

$$
\left[\begin{array}{l}
u_{k} \tag{16}\\
v_{k}
\end{array}\right] \stackrel{\text { def }}{=} A_{k} R^{m_{k}}\left[\begin{array}{l}
u_{k-1} \\
v_{k-1}
\end{array}\right], \quad\left[\begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right] \stackrel{\text { def }}{=} R^{-1} V^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{l}
u_{k} \tag{17}\\
v_{k}
\end{array}\right]=\prod_{1 \leqslant j \leqslant k}^{n} A_{j} R^{m_{j}}\left[\begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right], \quad\left[\begin{array}{l}
\varphi_{s} \\
\varphi_{s}^{*}
\end{array}\right]=V R^{s-n_{l}+1}\left[\begin{array}{l}
u_{l} \\
v_{l}
\end{array}\right] .
$$

On the other hand, by the definition of A_{k} we have

$$
\left[\begin{array}{l}
u_{k} \tag{18}\\
v_{k}
\end{array}\right]=R^{-1} V^{-1} \prod_{1 \leqslant j \leqslant n_{k}}^{n} T\left(z, a_{j}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]=R^{-1} V^{-1}\left[\begin{array}{c}
\varphi_{n_{k}} \\
\varphi_{n_{k}}^{*}
\end{array}\right] .
$$

Lemma 2. Let $0<\alpha<\pi$. For an arbitrary vector

$$
h=\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{C}^{2}, \quad|x|=|y|
$$

the following inequalities hold:

$$
\left|\xi_{1}(z) x-y\right| \leqslant\left|\xi_{2}(z) x-y\right| \leqslant \cot \frac{\alpha}{4}\left|\xi_{1}(z) x-y\right|, \quad z=e^{i t} \in \Delta_{\alpha}^{0},
$$

where $\xi_{1,2}(z)$ are defined in (10).

Proof. Without loss of generality, we may assume that $|x|=|y|=|a|$, so that $\quad x=a e^{i t(x)}, y=a e^{i t(y)}, 0 \leqslant t(x), t(y)<2 \pi$. Put $t(x, y)=t(x)-t(y)$. Then

$$
\left|\xi_{2} x-y\right|^{2}-\left|\xi_{1} x-y\right|^{2}=|a|^{2}\left(\left|\xi_{2}\right|^{2}-\left|\xi_{1}\right|^{2}\right)-2|a|^{2} \mathfrak{R}\left\{\left(\xi_{2}-\xi_{1}\right) e^{i t(x, y)}\right\}
$$

For the first term we have

$$
|a|^{2}\left(\left|\xi_{2}\right|^{2}-\left|\xi_{1}\right|^{2}\right)=\left|z_{2}-z\right|^{2}-\left|z_{1}-z\right|^{2}=2 \mathfrak{R}\left\{z \overline{\left(z_{1}-z_{2}\right)}\right\} .
$$

By (8) $z \overline{\left(z_{1}-z_{2}\right)}=-2 i e^{i t / 2} g(t)$ and hence

$$
|a|^{2}\left(\left|\xi_{2}\right|^{2}-\left|\xi_{1}\right|^{2}\right)=4 \sin \frac{t}{2} g(t)
$$

Next, $a\left(\xi_{2}-\xi_{1}\right) e^{i t(x, y)}=-2 i g(t) \exp \{i t / 2+i t(x, y)\}$ so that

$$
\begin{equation*}
\left|\xi_{2} x-y\right|^{2}-\left|\xi_{1} x-y\right|^{2}=4 g(t)\left(\sin \frac{t}{2}+|a|^{2} \mathfrak{R}\left\{\frac{i}{a} e^{i(t / 2+t(x, y))}\right\}\right) \tag{19}
\end{equation*}
$$

Let us now calculate the sum

$$
\left|\xi_{2} x-y\right|^{2}+\left|\xi_{1} x-y\right|^{2}=|a|^{2}\left(\left|\xi_{2}\right|^{2}+\left|\xi_{1}\right|^{2}+2\right)-2|a|^{2} \mathfrak{R}\left\{\left(\xi_{2}+\xi_{1}\right) e^{i t(x, y)}\right\}
$$

Similarly, by using $z_{1}+z_{2}=z+1$ (see (6)) we have

$$
\begin{aligned}
& \begin{aligned}
&|a|^{2}\left(\left|\xi_{2}\right|^{2}+\left|\xi_{1}\right|^{2}+2\right) \\
&=\left|z_{2}-z\right|^{2}+\left|z_{1}-z\right|^{2}+2|a|^{2} \\
&=2 \rho^{2}+2-2 \mathfrak{R}\left\{\bar{z}\left(z_{1}+z_{2}\right)\right\}+2|a|^{2}=4-2 \mathfrak{R}\{\bar{z}(z+1)\} \\
&=2(1-\mathfrak{R} z)=4 \sin ^{2} \frac{t}{2}, \\
& a\left(\xi_{1}+\xi_{2}\right) e^{i t(x, y)}=(1-z) e^{i t(x, y)} \quad \text { and } \quad 2 \mathfrak{R}\left\{\left(\xi_{1}+\xi_{2}\right) e^{i t(x, y)}\right\} \\
&=-4 \sin \frac{t}{2} \mathfrak{R}\left\{\frac{i}{a} e^{i(t / 2+t(x, y))}\right\} .
\end{aligned}
\end{aligned}
$$

Finally,

$$
\begin{equation*}
\left|\xi_{2} x-y\right|^{2}+\left|\xi_{1} x-y\right|^{2}=4 \sin \frac{t}{2}\left(\sin \frac{t}{2}+|a|^{2} \mathfrak{R}\left\{\frac{i}{a} e^{i(t / 2+t(x, y))}\right\}\right) \tag{20}
\end{equation*}
$$

By comparing (19) and (20) we see that

$$
\begin{equation*}
\left|\xi_{2} x-y\right|^{2}-\left|\xi_{1} x-y\right|^{2}=\frac{g(t)}{\sin \frac{t}{2}}\left\{\left|\xi_{2} x-y\right|^{2}+\left|\xi_{1} x-y\right|^{2}\right\} \geqslant 0 \tag{21}
\end{equation*}
$$

Since

$$
\frac{g(t)}{\sin \frac{t}{2}}=\sqrt{1-\frac{\sin ^{2} \frac{\alpha}{2}}{\sin ^{2} \frac{t}{2}}} \leqslant \sqrt{1-\sin ^{2} \frac{\alpha}{2}}=\cos \frac{\alpha}{2}
$$

we come to the inequality

$$
\left|\xi_{2} x-y\right|^{2}-\left|\xi_{1} x-y\right|^{2} \leqslant \cos \frac{\alpha}{2}\left\{\left|\xi_{2} x-y\right|^{2}+\left|\xi_{1} x-y\right|^{2}\right\},
$$

as needed.
Since $\left|r_{j}\right|=1,\left|\varphi_{n}\right|=\left|\varphi_{n}^{*}\right|$ on \mathbb{T} and

$$
V^{-1}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{\xi_{2}-\xi_{1}}\left[\begin{array}{l}
\xi_{2} x-y \\
-\xi_{1} x+y
\end{array}\right]
$$

it follows immediately from (18) and Lemma 2 that

$$
\begin{equation*}
\left|u_{k}\right| \leqslant\left|v_{k}\right| \leqslant \cot \frac{\alpha}{4}\left|u_{k}\right|, \quad k=0,1, \ldots, l . \tag{22}
\end{equation*}
$$

Let us now analyze the squeezing effect produced by the matrices A_{k}, defined in (15). Take

$$
A(z, \varepsilon) \stackrel{\text { def }}{=} R^{-1} V^{-1} T(z, a(1+\varepsilon)) V=R^{-1} V^{-1} V_{\varepsilon} R(z, \varepsilon) V_{\varepsilon}^{-1} V
$$

where V_{ε} reduces $T(z, a(1+\varepsilon))$ to diagonal form $R(z, \varepsilon)$ (cf. (9)). Under the condition $|1+\varepsilon|=1$, which is always assumed to hold, we have $r_{j}(\varepsilon)=$ $r_{j}, z_{j}(\varepsilon)=z_{j}$ and $R(z, \varepsilon)=R$.

Next,

$$
V_{\varepsilon}=\left(\begin{array}{cc}
1 & 1 \\
\xi_{1}(\varepsilon) & \xi_{2}(\varepsilon)
\end{array}\right), \quad V_{\varepsilon}^{-1}=\frac{1}{\xi_{2}(\varepsilon)-\xi_{1}(\varepsilon)}\left(\begin{array}{ll}
\xi_{2}(\varepsilon) & -1 \\
-\xi_{1}(\varepsilon) & 1
\end{array}\right)
$$

with $a(1+\varepsilon) \xi_{j}(\varepsilon)=z_{j}(\varepsilon)-z=z_{j}-z, j=1,2$. We have

$$
\begin{aligned}
& V^{-1} V_{\varepsilon}=I+\frac{1}{\xi_{2}-\xi_{1}}\left(\begin{array}{ll}
\xi_{1}-\xi_{1}(\varepsilon) & \xi_{2}-\xi_{2}(\varepsilon) \\
\xi_{1}(\varepsilon)-\xi_{1} & \xi_{2}(\varepsilon)-\xi_{2}
\end{array}\right), \\
& V_{\varepsilon}^{-1} V=I-\frac{1}{\xi_{2}(\varepsilon)-\xi_{1}(\varepsilon)}\left(\begin{array}{cc}
\xi_{1}-\xi_{1}(\varepsilon) & \xi_{2}-\xi_{2}(\varepsilon) \\
\xi_{1}(\varepsilon)-\xi_{1} & \xi_{2}(\varepsilon)-\xi_{2}
\end{array}\right) .
\end{aligned}
$$

Since
$\xi_{2}(\varepsilon)-\xi_{1}(\varepsilon)=\frac{z_{2}-z_{1}}{a(1+\varepsilon)}=\frac{\xi_{2}-\xi_{1}}{1+\varepsilon}, \quad \xi_{j}-\xi_{j}(\varepsilon)=\frac{z_{j}-z}{a} \gamma_{\varepsilon}, \quad \gamma_{\varepsilon}=\frac{\varepsilon}{1+\varepsilon}$,
then

$$
V^{-1} V_{\varepsilon}=I+\gamma_{\varepsilon} B(z), \quad V_{\varepsilon}^{-1} V=I-\varepsilon B(z)
$$

where

$$
B(z)=\frac{1}{z_{2}-z_{1}}\left(\begin{array}{ll}
z_{1}-z & z_{2}-z \\
z-z_{1} & z-z_{2}
\end{array}\right)
$$

Hence

$$
\begin{aligned}
A(z, \varepsilon) & =R^{-1}\left(I+\gamma_{\varepsilon} B(z)\right) R(I-\varepsilon B(z))=R^{-1}\left(R+\gamma_{\varepsilon} B R-\varepsilon R B-\varepsilon \gamma_{\varepsilon} B R B\right) \\
& =R^{-1}(R+\varepsilon B R-\varepsilon R B-\tilde{E}(z, \varepsilon)), \quad \tilde{E}(z, \varepsilon)=\frac{\varepsilon^{2}}{1+\varepsilon} B R(I+B)
\end{aligned}
$$

It is a matter of routine computation (we use $z_{1} z_{2}=\rho^{2} z$ at the last step) to show that

$$
R^{-1} B R-R=R^{*} B R-B=\frac{1}{\rho}\left(\begin{array}{cc}
0 & \frac{z_{2}-z}{r_{1}} \\
\frac{z_{1}-z}{r_{2}} & 0
\end{array}\right)=\frac{1}{\rho^{2}}\left(\begin{array}{cc}
0 & -i \eta_{2}(z) \\
-i \eta_{1}(z) & 0
\end{array}\right)
$$

with

$$
\begin{equation*}
\eta_{j}(z) \stackrel{\text { def }}{=} \frac{z_{j}}{z}\left(z_{j}-z\right)=\left|\eta_{j}(z)\right| e^{i \tau_{j}(z)}, \quad j=1,2 . \tag{23}
\end{equation*}
$$

Note that $\left|z_{j}\right|=\rho<1$ implies $\eta_{j} \neq 0$. Finally,
$A(z, \varepsilon)=I+\delta Q-E(z, \delta) ; \quad \delta=\frac{\varepsilon}{i \rho^{2}}, \quad E(z, \delta)=R^{-1} \tilde{E}(z, \varepsilon), Q=\left(\begin{array}{cc}0 & \eta_{2} \\ \eta_{1} & 0\end{array}\right)$.

Recall, that for a vector $h=[x, y]^{\prime} \in \mathbb{C}^{2}$ with nonzero entries we defined $t(x, y)=\arg (x \bar{y})$.

Lemma 3. Let $\beta=\operatorname{def} \frac{\pi+\alpha}{2}>\alpha$, and let a nonzero vector $h=[x, y]^{\prime} \in \mathbb{C}^{2}$ satisfy

$$
\begin{equation*}
|y| \leqslant|x| \leqslant C_{1}(a)|y| \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{5 \pi}{6}<t(x, y)+\tau_{1}(z)<\frac{7 \pi}{6} \tag{26}
\end{equation*}
$$

for some $z \in \Delta_{\beta} \subset \Delta_{\alpha}^{0}$. Then for small enough $|\varepsilon| \leqslant \varepsilon_{0}(a)<1$ with $|1+\varepsilon|=1$ and for all such z the inequality

$$
\begin{equation*}
\|A(z, \varepsilon) h\|^{2} \leqslant\left(1-\frac{|a|}{4 \rho C_{1}(a)}|\varepsilon|\right)\|h\|^{2} \tag{27}
\end{equation*}
$$

holds.

Proof. We have

$$
\begin{equation*}
\|A(z, \varepsilon) h\|^{2}=\|h\|^{2}+2 \mathfrak{R}\{\delta(Q h, h)\}+F(z, \varepsilon, h) . \tag{28}
\end{equation*}
$$

Write $\delta=|\delta| e^{i \tau} \neq 0$. Then

$$
Q h=\left[\begin{array}{l}
\eta_{2} y \\
\eta_{1} x
\end{array}\right]=\left[\begin{array}{l}
\left|\eta_{2} y\right| e^{i\left(t(y)+\tau_{2}\right)} \\
\left|\eta_{1} x\right| e^{i\left(t(x)+\tau_{1}\right)}
\end{array}\right]
$$

and

$$
\begin{aligned}
\delta(Q h, h) & =|\delta||x y|\left\{\left|\eta_{2}\right| e^{\left(-t(x, y)+\tau_{2}+\tau\right)}+\left|\eta_{1}\right| e^{\left(t(x, y)+\tau_{1}+\tau\right)}\right\} \\
\mathfrak{R}\{\delta(Q h, h)\} & =|\delta||x y|\left\{\left|\eta_{2}\right| \cos \left(t(x, y)-\tau_{2}-\tau\right)+\left|\eta_{1}\right| \cos \left(t(x, y)+\tau_{1}+\tau\right)\right\}
\end{aligned}
$$

By the definition of η_{j} (23) and (5), (6)
$\eta_{1} \eta_{2}=-\frac{\rho^{2} r_{1} r_{2}\left(z-\rho r_{1}\right)\left(z-\rho r_{2}\right)}{z^{2}}=-\frac{\rho^{2}}{z}\left\{z^{2}-(z+1) z+\rho^{2} z\right\}=\rho^{2}\left(1-\rho^{2}\right)>0$,
so that $\left|\eta_{1} \eta_{2}\right|=\rho^{2}|a|^{2}$ and $\tau_{1}+\tau_{2}=0$. Next, the condition $|1+\varepsilon|=1$, which is equivalent to $-2 \mathfrak{R} \varepsilon=|\varepsilon|^{2}$ or $2 \mathfrak{J} \delta=\rho^{2}|\delta|^{2}$, gives

$$
2|\delta| \sin \tau=\rho^{2}|\delta|^{2}, \quad \sin \tau=\frac{\rho^{2}}{2}|\delta|=\frac{|\varepsilon|}{2} .
$$

Hence, $\tau=O(\varepsilon)$ as $\varepsilon \rightarrow 0$ and in any case $0<\tau<\pi / 6$ for $|\varepsilon|<1$. In view of (26)

$$
\frac{2 \pi}{3}<t(x, y)+\tau_{1}(z) \pm \tau<\frac{4 \pi}{3}
$$

so that $\cos \left(t(x, y)+\tau_{1}(z) \pm \tau\right)<-1 / 2$ and

$$
\mathfrak{R}\{\delta(Q h, h)\}<-\frac{|\delta||x y|}{2}\left(\left|\eta_{1}\right|+\left|\eta_{2}\right|\right)<-|\delta||x y| \rho|a| .
$$

By (25)

$$
|x y| \geqslant \frac{|x|^{2}+|y|^{2}}{2\left(C_{1}(a)+1\right)}=\frac{\|h\|^{2}}{2\left(C_{1}(a)+1\right)} \geqslant \frac{\|h\|^{2}}{4 C_{1}(a)},
$$

which leads to the relation

$$
\left.2 \mathfrak{R}\{\delta(Q h, h)\}<-\frac{\rho|a|}{2 C_{1}(a)}|\delta|\|h\|^{2}=-\frac{|a|}{2 \rho C_{1}(a)} \right\rvert\, \varepsilon\| \| h \|^{2}
$$

It remains to estimate the last term F in (28). Clearly, $F=O\left(\varepsilon^{2}\right)\|h\|^{2}$, and we only have to make more precise the value " O ". Since $1-\rho \leqslant$ $\left|z_{j}-z\right| \leqslant 1+\rho<2$, then

$$
\|Q\| \leqslant 2, \quad\|B\| \leqslant \frac{4}{\left|z_{1}-z_{2}\right|}
$$

But (cf. [6 p. 21]) $\left|z_{1}-z_{2}\right| \geqslant 2 \pi^{-1}|t-\alpha|$, and hence uniformly for $z \in \Delta_{\beta}$ we have $\left|z_{1}-z_{2}\right| \geqslant(\pi-\alpha) / 2$ and $\|B\| \mid \leqslant 8(\pi-\alpha)^{-1}$. Therefore, $|F| \leqslant C_{2}(a)|\varepsilon|^{2} \|$ $h \|^{2}$. The proof is complete.

We want to apply the latter result to $[x, y]^{\prime}=\left[u_{k}, v_{k}\right]^{\prime}, k \geqslant 1$. Whereas (25) holds by (22) (with $C_{1}(a)=\cot \frac{\alpha}{4}$), a special choice of z and $\left\{m_{k}\right\}$ is called for (the twisting step of the procedure) to meet a much more delicate inequality (26).

Let $w_{j}=e^{2 \pi i \omega_{j}} \in \mathbb{T}, j=1,2, \ldots, N$. The points $\left\{w_{j}\right\}$ are called rationally independent if $\left\{1, \omega_{1}, \ldots, \omega_{N}\right\}$ are rationally independent in the usual sense, i.e.,

$$
\sum_{j=1}^{N} k_{j} \omega_{j}=k, \quad k_{j}, k \in \mathbb{Z} \stackrel{\text { def }}{=}\{0, \pm 1, \ldots\}
$$

implies $k_{1}=k_{2}=\cdots=k_{N}=k=0$.
The following result is just a version of the famous Kronecker theorem. Regarding the last statement see [8, Lemma 4].

Lemma 4. Let $\left\{w_{1}, w_{2}, \ldots, w_{N}\right\}$ be rationally independent points on \mathbb{T}. For each positive $d>0$ there is a number $m_{0}=m_{0}(N, d) \in \mathbb{N}$ such that for arbitrary sets $\left\{v_{j}\right\},\left\{v_{j}^{\prime}\right\}$ of points on \mathbb{T} the system of inequalities

$$
\left|w_{j}^{m} v_{j}-v_{j}^{\prime}\right|<d, \quad j=1,2, \ldots, N
$$

has a solution m with $m \leqslant m_{0}$.
Let us go back to (16) and put

$$
\left[\begin{array}{c}
p_{k} \\
q_{k}
\end{array}\right] \stackrel{\text { def }}{=} R^{m_{k}}\left[\begin{array}{c}
u_{k-1} \\
v_{k-1}
\end{array}\right]=\left[\begin{array}{l}
r_{1}^{m_{k}} u_{k-1} \\
r_{2}^{m_{k}} v_{k-1}
\end{array}\right], \quad\left[\begin{array}{c}
u_{k} \\
v_{k}
\end{array}\right]=A_{k}\left[\begin{array}{c}
p_{k} \\
q_{k}
\end{array}\right], \quad k=1,2, \ldots, l .
$$

We think of the passage from $\left[u_{k-1}, v_{k-1}\right]^{\prime}$ to $\left[u_{k}, v_{k}\right]^{\prime}$ as the k th step of our procedure, which is performed in two half-steps:
from $\left[u_{k-1}, v_{k-1}\right]^{\prime}$ to $\left[p_{k}, q_{k}\right]^{\prime}$ (the twisting part);
from $\left[p_{k}, q_{k}\right]^{\prime}$ to $\left[u_{k}, v_{k}\right]^{\prime}$ (the squeezing part).
We wish to show that the behavior of orthonormal polynomials φ_{n}, related to some sample sequences, at certain points is under the control.

Theorem 5. Let a be a nonzero point in \mathbb{D} and $\sin \frac{\alpha}{2}=|a|$. Suppose that the points $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{N}\right\}$ are taken on Δ_{β} with $2 \beta=\pi+\alpha$ which satisfy

$$
\begin{equation*}
w_{j}=\frac{r_{1}\left(\zeta_{j}\right)}{r_{2}\left(\zeta_{j}\right)} \text { are rationally independent }, \quad j=1,2, \ldots, N \tag{29}
\end{equation*}
$$

Then there is a number $0<\varepsilon_{0}(a)<1$ and a sequence $\Lambda=\left\{n_{1}<n_{2}<\cdots\right\}$ with uniformly bounded gaps $m_{k}=n_{k}-n_{k-1}=O(1)$ as $k \rightarrow \infty$, such that for each sample sequence $\left\{a, \Lambda, \varepsilon_{k}\right\}$ with $\left|\varepsilon_{k}\right| \leqslant \varepsilon_{0}(a)$ the relation

$$
\begin{equation*}
\sum_{s=n_{1}}^{\infty}\left|\varphi_{s}\left(\zeta_{j}\right)\right|^{2} \leqslant C(a, N) \sum_{l=1}^{\infty} \prod_{n=1}^{l}\left(1-\frac{|a|}{4 \rho \cot \frac{\alpha}{4}}\left|\varepsilon_{n}\right|\right), \quad j=1,2, \ldots, N \tag{30}
\end{equation*}
$$

holds.
Proof. Let us begin with the function $f=r_{1} / r_{2}$. It is not hard to see from (8) (see also [4, Sect. 2] for more details) that

$$
r_{1,2}\left(e^{i t}\right)=e^{i\left(\frac{t}{2} \pm \lambda\right)}, \quad \cos \lambda \stackrel{\text { def }}{=} \frac{\cos \frac{t}{2}}{\cos \frac{\alpha}{2}}, \quad e^{i t} \in \Delta_{\alpha},
$$

so that λ varies from 0 to π. Hence, $f=e^{2 i \lambda}$ is a homeomorphism of Δ_{α} onto \mathbb{T}. Since the set $w_{j}=f\left(\zeta_{j}\right)$ of rationally independent points is dense on the
torus \mathbb{T}_{N}, we can pick up the points $\left\{\zeta_{j}\right\}$ from an arbitrary arc inside Δ_{α} (say, from Δ_{β}), to meet (29).

Next, $e^{i\left(\pi-\tau_{1}\right)}=-e^{-i \tau_{1}}$,

$$
e^{i t\left(p_{k}, q_{k}\right)}=e^{i t\left(p_{k}\right)}-e^{i t\left(q_{k}\right)}=\frac{p_{k} \bar{q}_{k}}{\left|p_{k} q_{k}\right|}=f^{m_{k}} \frac{u_{k-1} \bar{v}_{k-1}}{\left|u_{k-1} v_{k-1}\right|},
$$

and we apply Lemma 4 with $w_{j}=f\left(\zeta_{j}\right)$,

$$
v_{j}=\frac{u_{k-1}\left(\zeta_{j}\right) \overline{v_{k-1}\left(\zeta_{j}\right)}}{\left|u_{k-1}\left(\zeta_{j}\right) v_{k-1}\left(\zeta_{j}\right)\right|}, \quad v_{j}^{\prime}=-e^{-i \tau_{1}\left(\zeta_{j}\right)}, \quad j=1,2, \ldots, N
$$

and $d=1 / 3$ to ensure (26).
Now Lemma 3 comes into play. As $\left\|\left[p_{k}, q_{k}\right]^{\prime}\right\|=\left\|\left[u_{k-1}, v_{k-1}\right]^{\prime}\right\|$, we have

$$
\left\|\left[\begin{array}{c}
u_{k}\left(\zeta_{j}\right) \\
v_{k}\left(\zeta_{j}\right)
\end{array}\right]\right\|^{2}=\left\|A\left(\varepsilon_{k}\right)\left[\begin{array}{c}
p_{k}\left(\zeta_{j}\right) \\
q_{k}\left(\zeta_{j}\right)
\end{array}\right]\right\|^{2} \leqslant\left(1-\frac{|a|}{4 \rho \cot \frac{\alpha}{4}}\left|\varepsilon_{k}\right|\right)\left\|\left[\begin{array}{l}
u_{k-1}\left(\zeta_{j}\right) \\
v_{k-1}\left(\zeta_{j}\right)
\end{array}\right]\right\|^{2}
$$

or

$$
\left|u_{k}\left(\zeta_{j}\right)\right|^{2}+\left|v_{k}\left(\zeta_{j}\right)\right|^{2} \leqslant \prod_{n=1}^{k}\left(1-\frac{|a|}{4 \rho \cot \frac{\alpha}{4}}\left|\varepsilon_{n}\right|\right)\left(\left|u_{0}\left(\zeta_{j}\right)\right|^{2}+\left|v_{0}\left(\zeta_{j}\right)\right|^{2}\right.
$$

with $k=1,2, \ldots, l, j=1,2, \ldots, N$. By (17)

$$
\left\|\left[\begin{array}{l}
\varphi_{s}\left(\zeta_{j}\right) \\
\varphi_{s}^{*}\left(\zeta_{j}\right)
\end{array}\right]\right\|^{2} \leqslant\|V\|^{2}\left\|\left[\begin{array}{l}
u_{l}\left(\zeta_{j}\right) \\
v_{l}\left(\zeta_{j}\right)
\end{array}\right]\right\|^{2}
$$

or

$$
\left|\varphi_{s}\left(\zeta_{j}\right)\right|^{2} \leqslant C(a) \prod_{n=1}^{l}\left(1-\frac{|a|}{4 \rho \cot \frac{\alpha}{4}}\left|\varepsilon_{n}\right|\right) .
$$

Since by Lemma 4 the gaps m_{k} are uniformly bounded, we see that

$$
\sum_{s=n_{l}}^{n_{l+1}-1}\left|\varphi_{s}\left(\zeta_{j}\right)\right|^{2} \leqslant C(a) m_{0}(N) \prod_{n=1}^{l}\left(1-\frac{|a|}{4 \rho \cot \frac{\alpha}{4}}\left|\varepsilon_{n}\right|\right),
$$

which immediately gives (30).
We are in a position now to prove the main result of the paper.

Proof of Theorem 1. It is clear from (13) that $\sum_{n=0}^{\infty}\left|\varepsilon_{n}^{\prime}\right|=\infty$, that is, $\left\{a_{n}^{\prime}\right\} \in \mathscr{B}\left(a^{\prime}\right)$. We begin with the choice of a. Consider the function $x(\alpha) \stackrel{\text { def }}{=} \frac{1}{4} \tan \frac{\alpha}{2} \tan \frac{\alpha}{4}$, which is monotonically increasing on $(0, \pi)$ and takes all values between zero and infinity. Pick α from the equality $x(\alpha)=$ $M\left|a^{\prime}\right|+1$ and put

$$
a \stackrel{\text { def }}{=} \sin \frac{\alpha}{2}, \quad 0<a<1
$$

Note that in our notation

$$
\begin{equation*}
x(\alpha)=\frac{\sin \frac{\alpha}{2}}{4 \cos \frac{\alpha}{2} \cot \frac{\alpha}{4}}=\frac{|a|}{4 \rho \cot \frac{\alpha}{4}} . \tag{31}
\end{equation*}
$$

Given $N \in \mathbb{N}$, pick the points $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{N}\right\}$ in Δ_{β} to meet (29). By Theorem 5 we find the number $\varepsilon_{0}(a)$ and the sequence $\Lambda \subset \mathbb{N}$ such that (30) holds. In view of (13), (31) and $x(\alpha)=M\left|a^{\prime}\right|+1$, the right-hand side of (30) is finite, which means that

$$
\sum_{s=0}^{\infty}\left|\varphi_{s}\left(\zeta_{p}\right)\right|^{2}<\infty
$$

It is well known (cf. [11, pp. 45-46; 2, Sect. 20]) that the latter inequality guarantees the existence of masses for the orthogonality measure μ at the points ζ_{p}.

It remains only to determine $\left\{\varepsilon_{n}\right\}$. Put

$$
\varepsilon_{k}^{\prime \prime}=0, \quad k \notin \Lambda, \quad\left|\varepsilon_{n_{l}}^{\prime \prime}\right|=\sum_{j=n_{l-1}}^{n_{l}-1}\left|\varepsilon_{j}^{\prime}\right|, \quad l \in \mathbb{N}, \quad n_{0}=1
$$

We have $\lim _{n \rightarrow \infty} \varepsilon_{n}^{\prime \prime}=0$ because of the boundedness of the gaps m_{k}. Let $n_{q} \leqslant s<n_{q+1}$. Then

$$
\sum_{k=1}^{s}\left|\varepsilon_{k}^{\prime \prime}\right|=\sum_{l=1}^{q}\left|\varepsilon_{n_{l}}^{\prime \prime}\right|=\sum_{l=1}^{q} \sum_{j=n_{l-1}}^{n_{l}-1}\left|\varepsilon_{j}^{\prime}\right| \leqslant \sum_{j=1}^{s}\left|\varepsilon_{j}^{\prime}\right|
$$

so that

$$
1 \geqslant \frac{\sum_{j=1}^{s}\left|\varepsilon_{j}^{\prime \prime}\right|}{\sum_{j=1}^{s}\left|\varepsilon_{j}^{\prime}\right|} \geqslant \frac{\sum_{j=1}^{n_{q}}\left|\varepsilon_{j}^{\prime \prime}\right|}{\sum_{j=1}^{n_{q+1}}\left|\varepsilon_{j}^{\prime}\right|}=\frac{\sum_{j=1}^{n_{q}-1}\left|\varepsilon_{j}^{\prime}\right|}{\sum_{j=1}^{n_{q+1}}\left|\varepsilon_{j}^{\prime}\right|}=1-\frac{\sum_{j=n_{q}}^{n_{q+1}}\left|\varepsilon_{j}^{\prime}\right|}{\sum_{j=1}^{n_{q+1}}\left|\varepsilon_{j}^{\prime}\right|} \rightarrow 1 .
$$

Since $\varepsilon_{n}^{\prime \prime} \rightarrow 0$, then $\left|\varepsilon_{n_{l}}^{\prime \prime}\right|<\varepsilon_{0}(a)$ for $l \geqslant l_{0}+1$. Define

$$
\varepsilon_{k}=0, \quad k \notin \Lambda, \quad\left|\varepsilon_{n_{l}}\right|= \begin{cases}0 & \text { for } l=1,2, \ldots, l_{0} \\ \left|\varepsilon_{n_{l}}^{\prime \prime}\right| & \text { for } l \geqslant l_{0}+1\end{cases}
$$

and $\left|1+\varepsilon_{n}\right|=1$ for all n. The triple $\left(a, \Lambda,\left\{\varepsilon_{n}\right\}\right)$ provides the sample sequence equivalent to the original one and $\mu\left\{\zeta_{p}\right\}>0, p=1,2, \ldots, N$, as stated.

Remark. As in [9], the following result can be obtained.
Let $\Omega_{n} \rightarrow+\infty, n \rightarrow \infty$, arbitrarily slow. There exists a sample sequence ($a, \Lambda,\left\{\varepsilon_{n}\right\}$) such that $\left|a_{n}-a\right|=\left|a \varepsilon_{n}\right| \leqslant \Omega_{n} / n$ and the corresponding orthogonality measure μ has infinitely many mass points on Δ_{α}. As a matter of fact, the set of mass points can be taken to be dense on Δ_{α}.

Let us mention the recent paper [10], where the problem of addition of a finite number of mass points to an absolutely continuous measure with asymptotically periodic reflection coefficients is studied. It is proved in [10, Theorem 3] that the difference of the corresponding reflection coefficients goes to zero in this case.

3. MASS POINTS ON THE WHOLE CIRCLE AND SINGULAR CONTINUOUS MEASURES

The argument here relies upon the equivalence

$$
\begin{equation*}
\mu\{\zeta\}>0, \quad \zeta \in \mathbb{T} \Leftrightarrow \sum_{n=0}^{\infty}\left|\varphi_{n}(\zeta)\right|^{2}<\infty \tag{32}
\end{equation*}
$$

mentioned above. Thereby, to prove that $\mu\{\zeta\}>0(\mu\{\zeta\}=0)$ we need certain upper (lower) bounds for the orthonormal polynomials.

We begin with the basic Szegő recurrences for monic orthogonal polynomials on the unit circle

$$
\Phi_{n}^{*}(z)=\Phi_{n-1}^{*}(z)+\bar{a}_{n} z \Phi_{n-1}(z)=\Phi_{n-1}^{*}(z)\left(1+\bar{a}_{n} z \frac{\Phi_{n-1}(z)}{\Phi_{n-1}^{*}(z)}\right), \quad \Phi_{n}=\frac{\varphi_{n}}{\kappa_{n}}
$$

(cf. [1 formula (8.1)]). Iteration of the latter leads to

$$
\begin{equation*}
\Phi_{n}^{*}(z)=\prod_{k=1}^{n}\left(1+\bar{a}_{k} z b_{k-1}(z)\right), \quad b_{j}=\frac{\Phi_{j}}{\Phi_{j}^{*}} \tag{33}
\end{equation*}
$$

Since $\left|b_{j}\right|=1$ on \mathbb{T} and $\Phi_{j}^{*} \neq 0$ in $\overline{\mathbb{D}}$, then $\left|b_{j}\right| \leqslant 1$ in $\overline{\mathbb{D}}$ and

$$
\begin{equation*}
\left|\Phi_{n}^{*}(z)\right|=\frac{\left|\varphi_{n}^{*}(z)\right|}{\kappa_{n}} \leqslant \prod_{k=1}^{n}\left(1+\left|a_{k}\right|\right) \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\left|\varphi_{n}^{*}(\zeta)\right|=\left|\varphi_{n}(\zeta)\right| \leqslant \kappa_{n} \exp \left\{\sum_{k=1}^{n}\left|a_{k}\right|\right\}, \quad \zeta \in \mathbb{T} \tag{35}
\end{equation*}
$$

Recall that the Szegő class of measures on \mathbb{T} is characterized by the inequality $\sum_{n \geqslant 1}\left|a_{n}\right|^{2}<\infty$ [1, Theorem 8.2].

Theorem 6. Let μ belong to the Szegö class and let its reflection coefficients satisfy

$$
\begin{equation*}
\sum_{n=1}^{\infty} \exp \left\{-2 \sum_{k=1}^{n}\left|a_{k}\right|\right\}=\infty \tag{36}
\end{equation*}
$$

Then $\mu\{\zeta\}=0$ for all $\zeta \in \mathbb{T}$, i.e., μ is a continuous measure. Conversely, let $a_{n}<0$ and assume that series (36) converges. Then $\mu\{1\}>0$.

Proof. We invoke the second kind polynomials ψ_{n} (compared to the first kind polynomials $\left.\varphi_{n}=\varphi_{n}\left(\left\{a_{n}\right\}\right)\right)$, which are defined by the sequence of reflection coefficients $\left\{-a_{n}\right\}$. The relation between φ_{n} and ψ_{n} is given by

$$
\varphi_{n}^{*}(z) \psi_{n}(z)+\varphi_{n}(z) \psi_{n}^{*}(z)=2 z^{n}
$$

(cf. [1, formula (1.17)]), which for $z=\zeta \in \mathbb{T}$ is

$$
\begin{equation*}
\overline{\varphi_{n}(\zeta)} \psi_{n}(\zeta)+\varphi_{n}(\zeta) \overline{\psi_{n}(\zeta)}=2 \mathfrak{R}\left\{\varphi_{n}(\zeta) \overline{\psi_{n}(\zeta)}\right\}=2 \tag{37}
\end{equation*}
$$

Hence $\left|\varphi_{n} \psi_{n}\right| \geqslant 1$ on the circle, and the upper bound for ψ_{n} yields the lower bound for φ_{n}.

The general formula for κ_{n} (cf. [1, formula (8.6)])

$$
\begin{equation*}
\kappa_{n}^{-2}=\prod_{k=1}^{n}\left(1-\left|a_{k}\right|^{2}\right) \tag{38}
\end{equation*}
$$

shows that φ_{n} and ψ_{n} have the same leading coefficients. Moreover, within the Szegő class $\kappa_{n}^{2} \nearrow \kappa^{2}<\infty$. It follows now from (35) applied to ψ_{n} that

$$
\left|\varphi_{n}(\zeta)\right|^{2} \geqslant\left|\psi_{n}(\zeta)\right|^{-2} \geqslant \kappa^{-2} \exp \left\{-2 \sum_{k=1}^{n}\left|a_{k}\right|\right\}
$$

By (36) the series in (32) diverges, which implies the first statement of the theorem.

Suppose now that $a_{n}=\bar{a}_{n}$. Then φ_{n}, ψ_{n} are real on the real line and by (33) and (38)

$$
\Phi_{n}(1)=\Phi_{n}^{*}(1)=\prod_{k=1}^{n}\left(1+a_{n}\right), \quad \varphi_{n}^{2}(1)=\kappa_{n}^{2} \Phi_{n}^{2}(1)=\prod_{k=1}^{n} \frac{1+a_{k}}{1-a_{k}}
$$

If in addition $a_{n}<0$, then

$$
\psi_{n}^{2}(1)=\prod_{k=1}^{n} \frac{1+\left|a_{k}\right|}{1-\left|a_{k}\right|}=\exp \left\{\sum_{k=1}^{n} \log \frac{1+\left|a_{k}\right|}{1-\left|a_{k}\right|}\right\}
$$

An elementary inequality $\log \frac{1+x}{1-x} \geqslant 2 x, 0 \leqslant x<1$, gives

$$
\psi_{n}^{2}(1) \geqslant \exp \left\{2 \sum_{k=1}^{n}\left|a_{k}\right|\right\}=\exp \left\{-2 \sum_{k=1}^{n} a_{k}\right\}
$$

From (37) we see that $\varphi_{n}(1) \psi_{n}(1)=1$ and

$$
\varphi_{n}^{2}(1) \leqslant \exp \left\{2 \sum_{k=1}^{n} a_{k}\right\}, \quad \sum_{n=1}^{\infty} \varphi_{n}^{2}(1) \leqslant \sum_{n=1}^{\infty} \exp \left\{2 \sum_{k=1}^{n} a_{k}\right\} .
$$

The second statement of the theorem follows immediately from (32). The proof is complete.

As a direct consequence we obtain the following result (cf. [3, Theorem VIII]).

Corollary 7. If $\left|a_{n}\right| \leqslant(2 n)^{-1}$ for $n \geqslant n_{0}$ then $\mu\{\zeta\}=0$ for all $\zeta \in \mathbb{T}$. If $a_{n}<0$ and $\left|a_{n}\right| \geqslant(1 / 2+\varepsilon) n^{-1}$ for $\varepsilon>0$ and $n \geqslant n_{0}$, then $\mu\{1\}>0$.

There is yet another upper bound for general orthonormal polynomials valid beyond the Szegő class (cf. [3, Theorem III])

$$
\begin{equation*}
\left|\varphi_{n}(\zeta)\right| \leqslant \exp \left\{\frac{1}{1-\gamma^{2}} \sum_{k=1}^{n}\left|a_{k}\right|\right\}, \quad \zeta \in \mathbb{T}, \quad \gamma \stackrel{\text { def }}{=} \sup _{n}\left|a_{n}\right|<1 \tag{39}
\end{equation*}
$$

which provides a number of curious examples of singular continuous measures given by their reflection coefficients.

Example. Take a set $\Lambda=\left\{n_{1}<n_{2}<\cdots\right\}$ of positive integers with $m_{k}=$ $n_{k+1}-n_{k} \rightarrow \infty$ as $k \rightarrow \infty$. We call a sequence $\left\{a_{n}\right\}$ of complex numbers lacunary if $a_{n}=0, n \notin \Lambda .^{2}$

[^0]Consider a lacunary sequence of reflection coefficients such that $a_{n_{k}}=a, 0<|a|<1$. We have

$$
\sum_{k=1}^{n}\left|a_{k}\right|=j|a|, \quad n_{j} \leqslant n<n_{j+1}-1, \quad j \geqslant 1
$$

Let ψ_{n} be the corresponding second kind polynomials. By (39) and $\left|\varphi_{n} \psi_{n}\right| \geqslant 1$ on \mathbb{T} we see that

$$
\left|\varphi_{n}(\zeta)\right|^{2} \geqslant \exp \left\{-\frac{2}{1-\gamma^{2}} \sum_{k=1}^{n}\left|a_{k}\right|\right\} .
$$

Therefore,

$$
\sum_{n=n_{1}}^{\infty}\left|\varphi_{n}(\zeta)\right|^{2} \geqslant \sum_{j=1}^{\infty} \sum_{n=n_{j}}^{n_{j+1}-1} \exp \left\{-\frac{2 j|a|}{1-|a|^{2}}\right\}=\sum_{j=1}^{\infty}\left(n_{j+1}-n_{j}\right) \exp \left\{-\frac{2 j|a|}{1-|a|^{2}}\right\}
$$

Assume now that the gaps m_{j} grow exponentially fast, more precisely,

$$
\log m_{j} \geqslant 2 j|a|\left(1-|a|^{2}\right)^{-1}
$$

Then the latter series diverges, and by (32) $\mu\{\zeta\}=0$ for all $\zeta \in \mathbb{T}$, that is, the measure is continuous. It remains only to refer to Khrushchev's theorem [7, Corollary 9.2] which states that such measures are singular.

The more general type of examples can be easily manufactured. Let

$$
\begin{equation*}
a_{n_{k}}=\gamma_{k}, \quad 0<\limsup _{k \rightarrow \infty}\left|\gamma_{k}\right|<1 . \tag{40}
\end{equation*}
$$

Then the measure generated by such a sequence of reflection coefficients is singular continuous as long as the gaps m_{j} grow fast enough.

On the other hand, let $\sum_{k}\left|\gamma_{k}\right|^{2}<\infty$ in (40), that leads to a subclass of measures in the Szegő class with the lacunary reflection coefficients. We have as above

$$
\sum_{n=n_{1}}^{\infty} \exp \left\{-2 \sum_{k=1}^{n}\left|a_{k}\right|\right\}=\sum_{j=1}^{\infty}\left(n_{j+1}-n_{j}\right) \exp \left\{-2 \sum_{k=1}^{j}\left|\gamma_{k}\right|\right\}
$$

By Schwarz's inequality

$$
\left(\sum_{k=1}^{j}\left|\gamma_{k}\right|\right)^{2} \leqslant j \sum_{k=1}^{j}\left|\gamma_{k}\right|^{2} \leqslant C^{2} j, \quad C^{2} \stackrel{\text { def }}{=} \sum_{k=1}^{\infty}\left|\gamma_{k}\right|^{2}
$$

so that

$$
\sum_{j=1}^{\infty}\left(n_{j+1}-n_{j}\right) \exp \left\{-2 \sum_{k=1}^{j}\left|\gamma_{k}\right|\right\} \geqslant \sum_{j=1}^{\infty}\left(n_{j+1}-n_{j}\right) e^{-2 C \sqrt{j}} .
$$

By Theorem 6 the corresponding measure is continuous as long as the gaps m_{j} grow exponentially fast. It is not clear though whether all such measures are pure absolutely continuous.

REFERENCES

1. L. Ya. (aka Ya. L.) Geronimus "Orthogonal Polynomials," Consultants Bureau, New York, 1961.
2. Ya. L. Geronimus, "Polynomials Orthogonal on a Circle and their Applications," Series and Approximations, American Mathematical Society Translations No. 1, Vol. 3, pp. 1-78, Providence, RI, 1962.
3. Ya. L. Geronimus, On certain estimates for orthogonal polynomials depending on parameters, Anal. Math. 3 (1977), 95-108.
4. L. Golinskii, Geronimus polynomials and weak convergence on a circular arc, Methods Appl. Anal. 6 (1999), 421-436.
5. L. Golinskii and P. Nevai, Szegő difference equations, transfer matrices and orthogonal polynomials on the unit circle, Comm. Math. Phys. 223 (2001), 223-259.
6. L. Golinskii, P. Nevai, F. Pinter, and W. Van Assche, Perturbation of orthogonal polynomials on an arc of the unit circle, II, J. Approx. Theory 96 (1999), 1-32.
7. S. Khrushchev, Schur's algorithm, orthogonal polynomials and convergence of Wall's continued fractions in $L^{2}(\mathbb{T})$, J. Approx. Theory 108 (2001), 161-248.
8. S. N. Naboko, On the dense point spectrum of Schrödinger and Dirac operators, Theory Math. Phys. 68 (1986), 18-28.
9. S. N. Naboko and S. I. Yakovlev, The discrete Schrödinger operator. The point spectrum lying on the continuous spectrum, St. Petersburg Math. J. 4 (1993), 559-568.
10. F. Peherstorfer and R. Steinbauer, Orthogonal polynomials on the circumference and arcs of the circumference, J. Approx. Theory 102 (2000) 96-119.
11. J. A. Shohat and J. D. Tamarkin, The problem of moments, "Mathematical Surveys," Vol. 1, Amer. Math. Soc., Providence, RI, 1970.
12. G. Szegő, Orthogonal polynomials, "American Mathematical Society Colloquium Publications," 4th ed., Vol. 23, Amer. Math. Soc. Providence, RI, 1975.

[^0]: ${ }^{2}$ The term "sparse" is used in the theory of Schrödinger operators.

