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Orthogonal polynomials on the unit circle are completely determined by their
reflection coefficients through the Szegd recurrences. We assume that the reflection
coefficients tend to some complex number a with 0<|a|<1. The orthogonality
measure g then lives essentially on the arc {e”: a<r<2m —a} where sin%dgw
with o € (0, 7). Under the certain rate of convergence it was proved in (Golinskii e al.
(J. Approx. Theory 96 (1999), 1-32)) that x has no mass points inside this arc. We
show that this result is sharp in a sense. We also examine the case of the whole unit
circle and some examples of singular continuous measures given by their reflection
coefficients. © 2002 Elsevier Science (USA)

Key Words: measures on the unit circle; orthogonal polynomials; reflection
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1. INTRODUCTION

Let p be a probability measure on the unit circle T = {|{| = 1} with the
infinite support. The latter is defined as the smallest closed set with the
complement having p-measure zero. The polynomials ¢,(z) = ¢, (u,z) =
Kn(u)z" + - - -, orthonormal on the unit circle with respect to u are uniquely
determined by the requirement that x,, = x,(u) > 0 and

/Tm(é)wm@)du:én,m, nm=0,1,..., (eT. (1)

It is well known (see, e.g., [5]) that the theory of orthogonal polynomials
on the unit circle can be viewed as a theory of the first-order vector
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difference equation

X(zn) =T a)X(z,n—1), neN¥{1,2,..1,

where

def 1 [z a def
T(Z,Cln) é _< ”)7 Pi é - |an|27 (2)

Pn\ ayz 1

and {a,} is an arbitrary sequence of complex numbers with |a,|<1. This
equation is called the Szegd equation and T the Szegd matrix. The relation

[ ¢,(2)
?n(2)

T(Z7an)[¢zlgj§]’ n=l, @y=¢p=1 (3)

n—1

is just a vector form of the known Szegé recurrences (cf. [12 formula
(11.4.7)]). Here, the reversed *-polynomial of a polynomial p, of degree
n is defined by pl(z) &f 2" pu(1/Z). In the orthogonal polynomials setting
the numbers a, are known as the reflection coefficients and a, = «;,'¢,(0).
The Favard theorem for the unit circle states that each sequence {a,} from

the open unit disk D comes up as a sequence of reflection coefficients for a
certain uniquely determined probability measure pu.

Let 74(z2) &f T(z,a,)T(z,a5-1)---T(z,a1), s=1, be the transfer matrix.

Then (3) can be written as
o(2) | _ |1
(pf(z)] —Q/S(Z)H' (4)

For each Szegb matrix T'(z, a) its eigenvalues {ry,r,}, i.e., the roots of the
characteristic equation

, z+1

- r+z=0, pz:l—\a|2 (5)

can be found explicitly (cf. [6, Sect. 2])

z+1E£4/(z—e*)(z—e ™)
2p

, ad§f2arcsin\a|.

rl?g(z) =

By the Vieta formulas

p(ri+r)=z+1, riry =z (6)
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There are two arcs of the unit circle pertaining to the number a:
def - j; odef
Ay ={e" 1 a<t<2n—a}, 4,={e":a<t<2m—o}. (7)

It is not hard to see that |ri(z)| = |r2(z)| = 1 for z € 4, (and r| = r, only at
the endpoints of the arc), and |ri(z)| > 1 > |r2(z)| off 4,. Moreover, for
z=¢" € 4,

. : iL t t
z12(€") défprljz(e”) = ¢ (cos 3 + ig(t)) , g™ \/ cos? g — cos? > (8)

Let us point out that both eigenvalues r; and arcs (7) are completely
determined by the absolute value |a| (and independent of the argument of «).
For z € Ag the Szegd matrix T can be reduced to diagonal form

T(z,a) = V(z)R(z)V"\(2), R(z)d§f<”(()z) 0 ) )
FQ(Z)

Here V' may be taken as

I 1 _ 1 &Ho -1
V: V 1:
<fl 52>’ 52—51<—51 1 >’

where {; = £;(z) are defined by the equalities

z+4aé; = pr; = zj, j=1,2. (10)

The starting point for our investigation is the following result obtained in
[6, Corollary 13, p. 21].

THEOREM A. Let lim,_ a, = a, 0<|a|<1 and suppose that for every
real t

o0 n
Zexp{t |ak—a|} = 0. (11)
n=1 k=1

Then the corresponding orthogonality measure has no mass points in Ag.

Note that (11) holds whenever |a, — a| = o(1/n). Our goal is to show that
this result is sharp in a way. Let 0<|b| <1, denote by %(b) the set of all
sequences {b,} of complex numbers which satisfy

(1) |bn) <1 for n=1;
(i) b, =b(1 +¢,), lim,_ &, = 0;

(iii) Y52 [en] = oc.
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DErFINITION. Two sequences {a,} € #(d') and {a|} € #(a") are said to
be equivalent if

noo Dy lefl
k=1 1%k

It turns out that if (11) is false (that is, the series converges for some ¢),
then there exists a sequence {a),} € #(d’), equivalent to the original one and
such that the set of mass points for the corresponding orthogonality
measure ¢’ is nonempty in an appropriate arc Ag,. The idea (we call it the
“twisting—squeezing procedure’) is adopted from [9], where the similar
result about discrete Schrodinger operators is established. We complete the
paper with relatively simple case of the whole unit circle and look at some
examples of singular continuous measures given by their reflection
coefficients.

2. TWISTING-SQUEEZING PROCEDURE

We will focus on the class of sample sequences of reflection coefficients,
each of which is determined by the following triple (a, A, {¢,}):

a is a nonzero complex number from D;

A ={n<n<---}is a sequence of positive integers;

{en} = is a sequence of complex numbers with [¢,[ <1, lim, . &, =0
and |1 +¢,| = 1.

Put

12
a(l +¢;) for n=ny. (12)

{a7 for n¢ A,
ay =

Note that |a,| = |a| for all n.
The main objective of our paper is to show that the result in Theorem A is
sharp in a sense.

THEOREM 1. Let a sequence {a,} of reflection coefficients satisfy a,, =
d'(1+ &) with lim,_ &, = 0 and 0<|d'| < 1. Suppose that for some M € R

|a;€—a'|} :Zexp{M|a’|Z|8§(|}<oo. (13)
T

n=1 k=1

o0

Z exp{M y
n=1 k=

Then for an arbitrary N € N there exists an equivalent sample sequence {a,}
such that the set of mass points of the corresponding orthogonality measure u
on the arc A, is nonempty and contains at least N points.
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Write T(-,a) =T, T(-,ay )= Tr. The transfer matrix 7, for such a
sample sequence (12) takes the form

Ty =TT " T, 7" Ty Ty T my =n. —me_1, (14)

where / € N, m; = n; and n; <s<wnyy,. Since |a,| = |a|, the arc Ag as well as
the eigenvalues |, are the same for all Szegd matrices T and T} in (14).
Let V reduce T to diagonal form on Ag (see (9)). Then

Ty = VR ™"V HT(VR" 'V T ... Ty (VR 'V,

If we slightly rearrange the factors, we come to the following representation
for the transfer matrix:

T=VR ™" Y RVIT)R" RV T V) (RT'V T V)RR V!

¥
=vRH ] 4R - RV 4, S RTYIT, Y (15)
1<p<!
For k =1,2,...,/ consider the set of vectors
u Uje— u 1
[ R g R | E 1], [ 0] 4 g-1p-1 1 (16)
Uk Uk—1 vo 1
Then
U - | uo 2 | w
= [ 4r™ , L = VR . (17)
Uk 1<j<k o | ¢ v

On the other hand, by the definition of A; we have

U 1 1 A -1 1 1 Dy,
=RV ][ TGa)| |=R"V| ] (18)
Uk I1<j<ny _1 P
LemMmA 2. Let 0<a<m. For an arbitrary vector
x
h = eC’,  Ix=
Y
the following inequalities hold:
* i
G-yl —yl< ot b @) -y, z=ee 4

where &, 5(z) are defined in (10).
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Proof. Without loss of generality, we may assume that |x| = |y| = |q], so

that x = ae"™, y=ae"), 0<t(x),1(y)<2n. Put (x,y) =t(x)—t(p).
Then

&ox =3 = & =3 = laP (&P — &) - 2dal’R{ (& — &)},
For the first term we have
P (16 = €1 = |22 — 2P = |21 = 2 = 2R{z(z1 — 22)}.
By (8) z(z1 — z2) = —2ie"/? g(r) and hence
(&P = &) = 4sin 2 g(0)
Next, a(é, — &,)e"™Y) = —2ig(t)exp{it/2 + it(x,y)} so that
ax =3P lerx =P = dg(0)(sin + laPw{ L L) o)
Let us now calculate the sum
&x =3P +|&x =3 = [aP (&P + & +2) = 2lal’R{ (& + &)™) |
Similarly, by using z; + z, =z 4 1 (see (6)) we have
lal (&) + 14 +2)
=lz2 =2 + |21 = 2* + 2Jaf’
=20 +2 - 2R{Z(z1 + 22)} + 2la]” = 4 — 2R{Z(z + 1)}

.ot
=2(1 — Rz) = 4sin’ 3

a(éy + &)™) = (1 — z)ei) and {(51 4 &y)et) }

= —4sin— 9{{ I/2+t(xy))}
Finally,

|Esx =y + |Ex —yf = 4 sin2<sm + | ER{ f/2+'<w>>}). (20)
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By comparing (19) and (20) we see that

a3 =l =P = Sl =P e -y} 20 @)
Since
2
t sin” &
g()t: 1-— 2< 1—sm2%:cosg,
smi s]n 2 2

we come to the inequality
(&x =3I = lerx = P <cos S leax 3 + |&rx =y,

as needed. 1

Since [r;] = 1, [¢,| = |o| on T and

V,l X _ 1 é2x_y
L’] fz—fll—fﬂﬂ'y’

it follows immediately from (18) and Lemma 2 that

|uk|<|vk|<cot%|uk|, k=0,1,... 1. (22)

Let us now analyze the squeezing effect produced by the matrices Ay,
defined in (15). Take

Alze )defR VIT(z,a(14¢)V =R 'W'V,R(z,¢) Vg—1 v,

where V, reduces T'(z,a(1 + ¢)) to diagonal form R(z,¢) (cf. (9)). Under the
condition |1 +¢| =1, which is always assumed to hold, we have r;(e) =
rj, zj(e) = zj and R(z,¢) = R.

Next,
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with a(1 +¢)&;(e) = zj(e) —z =z —z, j=1,2. We have

_ 1 & —&i(e) & —&(e)
V IVSZI 9
+fzél<él<s>—él @(s)—@)

N 1 &1 —&i(e) & —&i(e)
Ohdas @(s)—él(e)(fl(e)—@ 52@)_52)'

Since
R O e e e N R OR S S
then
V'V, =1+7y,B(2), Vo'V =1 —¢B(2),
where
B(z) = 1 (Zl—z zz—z>.
Z—zi\z—2z1 z—2
Hence

A(z,e) =R (I +v,B(z))R(I — ¢B(z)) = R"'(R+ y,BR — ¢eRB — ¢y, BRB)

2

1+e¢

=R "(R+eBR—¢RB — E(z,¢)),  E(z,e) =

BR(I + B).

It is a matter of routine computation (we use z;2, = p>z at the last step) to
show that

0 22.—: 0 .
R'BR—R—R'BR-B—( 7 :Lz | iny(2)
P\ 0 p>\ —in,(z) 0

r

with
def 1Z; itz .
ni(2) = j (zi—2) = (=)™, j=1,2. (23)

Note that |z;| = p<1 implies #; #0. Finally,

A(z,e) =1 4060 — E(z,0); & E(z,é):RlE(z,s),Q:<: %)
1

(24)

= ipz’
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Recall, that for a vector & = [x,y]' € C* with nonzero entries we defined
1(x, y) = arg(xy).

LemMma 3. Let =% 22> o and let a nonzero vector h = [x,y]' € c?
satisfy

yI<Ix[<Ci(a)lyl (25)

and

5Fn<t(x,y) +71(2) <%I (26)

for some z € Ag C AY. Then for small enough |e|<eo(a)<1 with |1 +¢| = 1
and for all such z the inequality

4Gz, (1= g5 ol ) AP @
holds.
Proof.- We have
G = I+ 2R((Qh MY + FEah) (29)

Write § = |§]e"#0. Then

Oh = [w] _ lImW““”””]

max ] [ttt
and
(0, ) =10] ey { el 1719y e 1)
R{0(Qh, h)} = o] [xy[{Inscos(t(x,y) — 72 = 7) + [ny|cos(¢(x,y) + 11 + 1)}
By the definition of 5; (23) and (5), (6)

2 2
pnrnlz—pn)z—pr p
Ny = ( > I ):—?{22—(Z+1)Z +p’z}=p (1 —p%) >0,

so that |5,n,| = pa* and 7, + 1, = 0. Next, the condition |l +¢| =1,
which is equivalent to —2%Re = |¢|* or 236 = p?|d|*, gives

2

Yofsine = pof,  sinc="15] = ]

7.
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Hence, 1 = O(¢) as ¢ — 0 and in any case 0<t<n/6 for |¢|< 1. In view of
(26)

2 4
SF<ixy) +r(s) Fr<s,

so that cos(#(x,y) + 71(z) £1)< — 1/2 and

——(m| + )< = 15| |xy| plal.
By (25)

Ix” + [y _ 1A >IIhII2
2(Ci(a)+1)  2(Ci(a) +1)” 4C(a)

|xy| =

which leads to the relation

Plal |a\
2R{6(Qh, h)} < — [Sl][Al1* = — 11 .
Ci(a) Ci(a)
It remains to estimate the last term F in (28). Clearly, F = O(¢2)||h||, and
we only have to make more precise the value “O”. Since 1—p<
|zj — z| <14 p<2, then

4

o<z, |IBl|l<——.
|21 — 22

But (cf. [6 p. 21]) |z; — z3| =277 |t — «, and hence uniformly for z € Aﬁ we
have |21 — 22| > (n — ) /2 and ||B||<8(n — «)~". Therefore, |F|< Cs(a)|e’||
h|[*. The proof is complete. &

We want to apply the latter result to [x,y]" = [u,vi]’, k>1. Whereas (25)
holds by (22) (with Cj(a) = cot), a special choice of z and {m} is called
for (the twisting step of the procedure) to meet a much more delicate
inequality (26).

Let w; = ™ € T, j=1,2,...,N. The points {w;} are called rationally
independent if {1, w,...,wy} are rationally independent in the usual sense,
ie.,

N
N okoy=k, ki keZS{0,£1,..}
=1

implies ki =ky=---=ky =k =0.
The following result is just a version of the famous Kronecker theorem.
Regarding the last statement see [8, Lemma 4].
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LEMMA 4. Let {wi,wa,...,wy} be rationally independent points on T.
For each positive d > 0 there is a number my = my(N,d) € N such that for
arbitrary sets {v;}, {vi} of points on T the system of inequalities

[wi'v; —vi|<d, j=12,...,N
has a solution m with m<my.

Let us go back to (16) and put

m
Pk U1 || 1 Uk Uk
- My ?
i k-1 v Uk

We think of the passage from [u;_1,vr 1]’ to [ux,vi] as the kth step of our
procedure, which is performed in two half-steps:

from [u_1,vr_1]' to [pr,qx]’ (the twisting part);

from [px, qx] to [ur,vr]’ (the squeezing part).

We wish to show that the behavior of orthonormal polynomials ¢,,
related to some sample sequences, at certain points is under the control.

Pk
qk

= R = Ay

1 k=1,2,...,L

THEOREM 5. Let a be a nonzero point in D and sin = |a|. Suppose that
the points {{1,(,..., y} are taken on Ag with 2p = n + o which satisfy

w;p = n()
J r2(</‘)

Then there is a number 0<g¢y(a) <1 and a sequence A = {n; <ny < ---} with
uniformly bounded gaps my, = ny — ni_1 = O(1) as k — oo, such that for each
sample sequence {a, A, e} with |ex|<eo(a) the relation

00 00 /
> leg)f <cam s TT(1-gaslel). =128 (0

s=ny =1 n=1

are rationally independent, j=12,...,N. (29)

holds.

Proof. Let us begin with the function f = r;/r,. It is not hard to see
from (8) (see also [4, Sect. 2] for more details) that

t
. L dBfCOS_ .
ria(e") = &2, =2 d'ed,

)
so that /1 varies from 0 to ©. Hence, f = ¢*” is a homeomorphism of 4, onto
T. Since the set w; = f({;) of rationally independent points is dense on the
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torus Ty, we can pick up the points {{;} from an arbitrary arc inside 4, (say,
from 4p), to meet (29).
Next, e/(m71) = —e~11

Pl Pdi) — it(r) _ pitlar) — Pk ey Mk—1Vk—1
)
|Prqr| |ttie—1 k-1

and we apply Lemma 4 with w; = f({;),

VJZM v/,:_e_irl(g) 2 __,7]\77

=1
|uk—l(Cj)Uk_1(§j)|’ J y ] y 2,

and d = 1/3 to ensure (26).
Now Lemma 3 comes into play. As ||[px,qx]'|| = ||[tx—1,vk—1]'||, we have

ue(§5) g . uk—1(¢;)
‘ lvk@] (g k')’ lvk_aml

2 2 2

Alek)

Pk(Cj)
‘Ik(Cj)

or
k
(5P + ou(6)P < TT (1= s ) 06 + &P

n=1

with k=1,2,...,1, j=1,2,...,N. By (17)

(ps(Cj)
@5 (&)

/
0,60 < €@ T (1 =5 s )

n=1

2
2
<IVli

2

”I(Cj)
vz(Cj)

or

Since by Lemma 4 the gaps my are uniformly bounded, we see that

np—1 /
1+1 |a|
> loo) < Clamo TT (1 - 5 bl )

S=n; n=

which immediately gives (30). 1

We are in a position now to prove the main result of the paper.
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Proof of Theorem 1. 1t is clear from (13) that " |e/,| = oo, that is,
{d,} € B(a’). We begin with the choice of a. Consider the function
x(oc)déf%tan%tan % which is monotonically increasing on (0,7) and takes
all values between zero and infinity. Pick a from the equality x(«) =
M|d'| + 1 and put

def o
a= s1n2 O<a<l.

Note that in our notation

x(o) =

sinf  |d|

(1)

4cosicot? 4pcot?

Given N €N, pick the points {{;,(5,...,{y} in 4p to meet (29). By
Theorem 5 we find the number & (a) and the sequence A C N such that (30)
holds. In view of (13), (31) and x(a) = M|d’| + 1, the right-hand side of (30)
is finite, which means that

> ey < oo
s=0

It is well known (cf. [11, pp. 45-46; 2, Sect. 20]) that the latter inequality
guarantees the existence of masses for the orthogonality measure p at the
points (.

It remains only to determine {¢,}. Put

I’l[—]
§=0, k¢ lel= lel  IeN, m=1.

J=ni-

We have lim,_. €&, =0 because of the boundedness of the gaps my. Let
ng<s<ng1. Then

n,l

S
2 I len,l Z 2 \8|<lelv
k=1 =1 j=n-
so that
-1 y
Si 1 S g S el X, bl
RTINS RS ST

Since &, — 0, then [¢), | <eo(a) for /=1y + 1. Define

1>

0 for I=1,2,...,1,

=0, kéAa | =
Ek ’ ¢ ) ‘31| {|€// for I=>1y+ 1,
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and |l +¢&,/ =1 for all n. The triple (a,A,{e,}) provides the sample
sequence equivalent to the original one and u{(,} >0, p=1,2,...,N, as
stated. 1

Remark. As in [9], the following result can be obtained.

Let 2, — 400, n — o0, arbitrarily slow. There exists a sample sequence
(a,A,{en}) such that |a, — a| = |ae,| <Q,/n and the corresponding ortho-
gonality measure u has infinitely many mass points on 4,. As a matter of
fact, the set of mass points can be taken to be dense on 4,.

Let us mention the recent paper [10], where the problem of addition of a
finite number of mass points to an absolutely continuous measure with
asymptotically periodic reflection coefficients is studied. It is proved in [10,
Theorem 3] that the difference of the corresponding reflection coefficients
goes to zero in this case.

3. MASS POINTS ON THE WHOLE CIRCLE AND SINGULAR
CONTINUOUS MEASURES

The argument here relies upon the equivalence

W()>0,  eTed [ Of <o (32)
n=0

mentioned above. Thereby, to prove that u{(} >0 (u{(} =0) we need
certain upper (lower) bounds for the orthonormal polynomials.

We begin with the basic Szegd recurrences for monic orthogonal
polynomials on the unit circle

B _ D, (z
Py(2) = D1 (2) + @z Py1(2) = D) (2) (1 Tz 18)’ Pn = %'
n—1 n

(cf. [1 formula (8.1)]). Iteration of the latter leads to
* . ~ @;
O5(2) = [[(0 + @zbia(2), b= —x (33)

k=1 J

Since |bj| = 1 on T and &7#0 in D, then |bj|<1 in D and

(2)) "”" <H T lal). (34)
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93O = e, (O] <K exp{i Iakl}, (eT. (35)
k_

=1

Recall that the Szegd class of measures on T is characterized by the
inequality ), |an|2 < oo [1, Theorem 8.2].

THEOREM 6. Let u belong to the Szegé class and let its reflection
coefficients satisfy

Zoo: exp{—2 Xn: |ak|} = 00. (36)
n=1 k=1

Then p{{} =0 for all { € T, ie., p is a continuous measure. Conversely, let
a, <0 and assume that series (36) converges. Then u{l1} > 0.

Proof. We invoke the second kind polynomials y, (compared to the
first kind polynomials ¢, = ¢,({a,})), which are defined by the sequence
of reflection coefficients {—a,}. The relation between ¢, and v, is given
by

Pu(DW(2) + @, (2 (2) = 22"

(cf. [1, formula (1.17)]), which for z={ € T is

200 () + 0,0, 0 = 2% 0,0, O } = 2. (37)

Hence |¢,¥,| =1 on the circle, and the upper bound for v, yields the lower
bound for ¢,.
The general formula for x,, (cf. [1, formula (8.6)])

2 =101~ lal) (38)

k=1

shows that ¢, and y, have the same leading coefficients. Moreover, within
the Szegd class k2 /" k? <oc. It follows now from (35) applied to v, that

9O = Iwn(é)‘2>x‘zexp{—2z ak|}~
k=1

By (36) the series in (32) diverges, which implies the first statement of the
theorem.
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Suppose now that a, = a,. Then ¢,, , are real on the real line and by
(33) and (38)

n

s, )=o) =[[(1 +a). o) =ke2) =]]

k=1 k=1

If in addition a, <0, then

1+ |a| 1+ |ay|
2
1) = = ex .

An elementary inequality log {¥£>2x, 0<x <1, gives

wi<1>>exp{zi |ak|}=exp{ zzak

k=1

From (37) we see that ¢,(1),(1) =1 and

1)<exp{2 2”: ak}, i P2(1)< i exp{Z zn: ak}.
k=1 n=1 n=1 k=1

The second statement of the theorem follows immediately from (32). The
proof is complete. 1

As a direct consequence we obtain the following result (cf. [3, Theorem
VIII)).

COROLLARY 7. If |a,|<(2n)~" for n=ny then p{} =0 for all { € T. If
a,<0 and |a,|=(1/2 +&)n~" for ¢ > 0 and n>ny, then p{1} > 0.

There is yet another upper bound for general orthonormal polynomials
valid beyond the Szegoé class (cf. [3, Theorem III])

1 1 def
|<p,,(c>|<exp{l — Zlakl}, e, y%up lal<l, (39)
=1 n

which provides a number of curious examples of singular continuous
measures given by their reflection coefficients.

ExaMmPLE. Take a set A = {n; <np < ---} of positive integers with ny =
Hpy1 — g — 00 as k — oo. We call a sequence {a,} of complex numbers
lacunary if a, =0, n¢ A?

2The term “sparse” is used in the theory of Schrédinger operators.
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Consider a lacunary sequence of reflection coefficients such that
an, = a, 0<]a|<1. We have

n
ST lal =jlal, m<n<m -1, j=1.
k=1

Let , be the corresponding second kind polynomials. By (39) and
lp, ¥, =1 on T we see that

2 n

o\ 12

[0a(O)F Zexpq —7—— D laxl ¢-
iy

Therefore,

00 oo Mjy1—1 2]|Cl| 00 2]|a|
TEEDDS exp{— } =S 0 —n»exp{— }
n=n, j=1 n=n; 1 - ‘a| j=1 1- |a|

Assume now that the gaps m; grow exponentially fast, more precisely,
log m; >2jlal(1 = [a*)™"

Then the latter series diverges, and by (32) u{{} =0 for all { € T, that is,
the measure is continuous. It remains only to refer to Khrushchev’s
theorem [7, Corollary 9.2] which states that such measures are
singular.

The more general type of examples can be easily manufactured. Let

Ane = Vies 0< lim sup

k—o0

Then the measure generated by such a sequence of reflection coefficients is
singular continuous as long as the gaps m; grow fast enough.

On the other hand, let >, Iye|? <oo in (40), that leads to a subclass of
measures in the Szego class with the lacunary reflection coefficients. We have
as above

> exp{—2 > Iak} = Z (1 — n;) exp{ -2 Z |/k|}
k=1 Jj=1

n=n)

By Schwarz’s inequality

. 2 .
J J [ee)
. 2 . def 2
<k§1|m> <j k§l|"/k| <CY, CE= kEII“/kI :
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so that

> (np1 = ny)expq —2 Z el =) (mipr — ny)e V.
Jj=1 Jj=1

By Theorem 6 the corresponding measure is continuous as long as the gaps
m; grow exponentially fast. It is not clear though whether all such measures
are pure absolutely continuous.

1.

10.

11.

12.
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